
B. RANDELL, Editor 

DAD, The C.S.I.R.O. 
System 

Operating 

13. J. AUSTIN, T. S. HOLDEN AND ~R. H. HUDSON 
C.S.I.R.O. Computing Research Section, 
Canberra, Australia 

The design and implementation of the C.S.I.R.O. operating 
system, DAD, is described in detail. This system is designed for 
the Control Data 3600 using a large drum backing store and 
is intended to allow the integration of a remote console 
(display) subsystem into a conventional job stack environment. 

The use of the drums, the buffering of input and output on 
slow peripherals, and the execution of normal job stack work 
are described. The display subsystem is described only as it 
integrates into the rest of the system. The techniques found 
useful in the development of DAD are given, and an assessment 
is made of the validity of various design decisions. 

Performance figures based on several months of operation 
are tabulated. 

l .  I n t r o d u c t i o n  

This paper is intended to give details of the design and 
performance of the C.S.I.R.O. operating system, DAD. 
A preliminary description was given by Austin and tIolden 
[2] in a paper written before the design had been finalized 
and tested in practice. 1 (See also Pearcey and Kerr [1], and 
Kerr and Karoly [3].) The system has now reached some 
stability, although further refinements and facilities are 
currently being added. The object here is to give a full 
description of the design, and some performance figures 
based on several months of operation. 

The writing of the C.S.I.R.O. Drum and Display (DAD) 
Monitor was undertaken in an effort to use to best ad- 
vantage the equipment at our disposal. This comprises a 
Control Data 3600 computer with a 32-thousand-word, 
4S-bit core store, eight magnetic tape drives, three line 
printers, a card reader, a card punch, two incremental 
plotters and two reader/punch paper tape stations, to- 
gether with one million words of high speed drum backing 

1 DAD has been the standard system at the C.S.I.R.O. installation 
since June 1966, and has recently (February 1967) become the 
standard system of the Computer Center at Santa Barbara, 
California. 

store, six small remote console keyboard displays, and a 
19-inch CRT display. The equipment, other than the last 
three types listed, has been operating since August 1964, 
but the drums and displays were not delivered until March 
1966. Work on the DAD system commenced in December 
1964. 

The last three I /O devices mentioned are grouped to- 
gether to emphasize their importance in the DAD system. 
DAD uses the drums as a large I /O well, and the method 
by which this has been implemented has provided an 
environment for the effective use of the displays. This 
paper does not set out to describe in detail the display 
subsystem (DAVE), but rather deals with I /O processing, 
job stack handling, and the control and usage of periph- 
erals. 

Prior to the introduction of DAD, the CDC-supplied 
monitor, SCOPE, was used. Users of the system, both in 
Canberra and in other parts of the C.S.I.R.O. network, 
had been developing programs under SCOPE since August 
1964, and therefore a high degree of compatibility had to 
be achieved between SCOPE and DAD from the users' 
point of view. Furthermore, as the manpower resources 
were comparatively meagre, it was imperative that only 
the minimum rewriting of the system be attempted, and 
therefore the smallest possible modifications have been 
made to the compilers, assemblers, and other l ane  com- 
plexes so that they would work under the DAD system. 
Thus, within the framework of eompatibility with SCOPE, 
the aim was to design a monitor with an efficient I / 0  
buffering scheme into which a display subsystem could be 
successfully integrated. The aim was also to produce a 
system which would ease the burden on the operators. 
This has been achieved by incorporating into the monitor 
the scheduling of job executions. Furthermore, the mar- 
shalling of magnetic tapes and other data required by 
programs, and the handling of equipment failures, are such 
that the operators can attend to their various tasks as 
convenient, without halting the system as a whole. 

2. A l l o c a t i o n  o f  Core  S t o r a g e  

The core store is allocated to various functions of the 
monitor in four blocks, viz.: 

(a) Resident, which handles all interrupt processing and 
requests from users at execution time, and also I /O buffer- 
ing. 

(b) Display area, which is a small area used by all dis- 
play programs on an overlay basis and by the display 
monitor DAVE. 

Volume 10 / Number 9 / September, 1967 Communicat ions  of the AC1V[ 575 



(e) Store usect by the current job stack progra>~. 
(d) The rest of the store, which is used for buffering 

information to or from the drums. 
Note that only one job from the job stack is in the store 

at a time. It, was desirable that the maxinmm store space 
available to this job (the "main job") be not less than the 
available space left by SCOPE, in order that compatibility 
be achieved. This consideration has forced us to write the 
resident part of DAD with an accent on brevity. We have 
in fact failed to meet this target by about 300 words. DAD 
resident occupies 4500 words; DAD plus the display area 
(b), 7300 words. I t  will be seen that there is no attempt 
to run more than one inain job at a time. We feel that the 
3600 does not have sufficient hardware facilities, in that 
the bounds protection is not complete since it can be by- 
passed by input from peripher~ds, and there is no built-in 
relocation feature. 

3. U s e  o f  t h e  D r u m s  

The heart of the DAD system lies in its use of the drums. 
The drum store is used up in segments of 256 words at a 
time, and the buffer area (d) is similarly subdivided. The 
buffer area can be thought of as an extension of the drums 
with the property that immediate access is possible. The 
drum segments not in use are shown in the Free Space 
List, which is a bit pattern held in core. 

Under SCOPE, a prograrmner referenced all input or 
output via "logical units," which were basically magnetic 
tapes but could be other devices which produced or re- 
ceived data records in a serial manner. In the DAD moni- 
tor, this concept has been taken over and generalized by 
providing a means for storing and accessing serial data 
strings on the dram. These data strings are called "docu- 
ments." A document is stored as a linked series of 256- 
word segments, which are allocated dynamically as the 
document is created. The linking structure contains both 
forward-pointing and backward-pointing addresses, so that 
movements through the document in either direction are 
possible. The programmer is provided with the facility for 
accessing more than 50 documents in one program and also 
means whereby he can name a document, save it on the 
drum, and retrieve it later. This last feature makes an 
effective display system feasible. 

The programmer may view DAD documents as mag. 
netic tapes and need have no knowledge of the fact that 
the serial access properties are simulated by the system. 
Facilities are provided to write records and to read records 
(forwards or reverse) with the same ability as the 3600 
hardware to write record markers, skip information, and 
chain from one control word to another. Further facilities 
are provided which allow backspacing, skipping forward or 
backward to a file mark, and rewinding to the beginning 
of the document. A high degree of compatibility has been 
achieved between the facilities provided in magnetic tape 
hardwal~ and those simulated by DAD on the drum, and 
it is possible to develop a program on smM1 quantities of 

data using a drum logical unit, and to change to n~;~gnetie 
tape for production purposes, merely by changing one 
control card. I~, addition, the linked structure of a doeu-. 
ment makes it, easy to add facilities not possible wiih 
magnetic tapes, viz., the insertion and deletion of records° 
These properties of drum documents do not appear to be 
utilized by many of the users, but they have been most 
effectively employed in many parts of the system itself. 

The chief system documents are the Main Documents 
I,ist (MDL), the Output List (OL), and the I!;xecutiotl 
List (EL). In fact each of these consists of more than one 
document. A detailed description will be given in later sec- 
tions of the paper, but an outline of the functions of MDL, 
OL, and EL is appropriate here. MDL contains the direc- 
tory of all documents currently on the drum. OL lists all 
documents awaiting output, and the peripheral type re- 
quired. EL lists all documents awaiting execution, and 
gives the maximum CPU time to be allowed for each. 

' the part of the DAD system which simulates hardware 
properties for drmn documents is re-entrant; that is, it can 
deal with many active documents simultaneously. This 
adds quite considerably to the programming required but 
is well worthwhile. The maximum number of documents 
that can be handled at any time is limited tufty by the size 
of various tables and has been set at ten. This number 
appears to be sufficient. 

Documents may be given nantes and may be saved on 
the drum and retrieved later by referring to the name. 
The list of aJl documents currently on the drum is kept in 
the Main Documents List (MDL), which is itself a docu- 
ment. Each entry gives a document, name and the drum 
address at which its first segment starts. 

Programmers using the C.S.I.R.O. network are identi- 
fied for accounting purposes by an eight-letter charge code. 
Document names contain the charge code of the program- 
mer who "owns" them. There is a limited cheek placed 
upon one programmer attempting to use the documents of 
another--he may read them, but not ~dter or destroy them. 

The exact layout of the linking structure is worth men- 
tioning. I t  has already been stated that drum space is 
allocated in 256-word segments, and that each segment 
contains a forward and a backward link. There is also a 
field giving the number of words in the segment which are 
aetuaJly used. This is only different from 256 for the last 
segment of a document or where insertion or deletion 
operations have occurred. The iogical records are also 
given by a linking structure. Successive records are sepa- 
rated by a word which gives their lengths, so that track can 
be kept of the record structure whether the document is 
being scanned forwards or backwards. This extra word 
also gives certain other information which is used to 
simulate hardware properties such as even/odd parity. 
Records are held without regard to the boundaries of the 
256-word segments and just spill over to the next segment 
as required. Thus, all segments comprising a document are 
fully utilized except when insertion or deletion operations 
have been carried out. 

576 Communications of the ACT~! Volume 10 / Number 9 / September, 11967 



The programming required to achieve the above is com- 
plicated, but was t,o a large exigent tested out by simulation 
lcmg before the drums were delivered. Some bugs remained, 
however', ;~;rtd showed up only when considerable drum 
activity occurred. 

A linking systeln such as this has two characteristics 
when things go wrong: (a) the conditions which cause the 
error are ill-defined and hard to reproduce, and (b) the 
system carries on past the occurrence of the error for a 
considerable distance, stopping only when the links point 
to a nonexistent drum address. I t  seems, therefore, that  
the desig~ of the system should include some means of 
recognizing a wrong link word at once. For  instance, any 
unused bits in the word could be adjusted to make the 
word an exact multiple of, say, 13 and the system could 
stop at once on failure of a link word to pass this test. 
This would make debugging much simpler and also pin- 
point hardware failures more rapidly. 

The allocation of segments to a programmer is not  under 
his control but  is "opt imized" for him. To be precise, an 
a t tempt  is made to choose segments so that  forward move- 
ment  through the document is made as fast as possible. 
Switching tracks takes no appreciable time on the drums, 
aad so all segntents with the same angular position are 
equally accessible. However, no use is made of this fact. 
The  first a t tempt  is to link a segment to one which is 
5msec ahead around the drunK, this being the minimum 
spacing for which the reading of both segments with a 
single drum revolution can be guaranteed. If  this particular 
segment is not available, any available segment is chosen. 
In  practice, it  turns out tha t  this simple algorithm opti- 
mizes successfully for 10-30 segments before breaking 
down. 

The servicing of drum read/wri te  requests is also opti- 
mized. The drum hardware includes a facility for ascer- 
taining the angular position of the drums, which are not 
locked in phase. 

At first, an algorithm was tried which favored system or 
display program drum requests, as an a t tempt  to improve 
efficiency, especially in the response time of the displays. 
This was found not to be of much use in the latter respect 
and, furthermore, introduced some logical difficulties when 
some requests had to be serviced in the order they were 
made. The present optimizing algorithm is thus quite 
s imple-- the request from the queue which can be serviced 
first is taken. In sampling the angular position of each 
drum a small constant is added to make sure that  the best 
request can be selected and started before its crisis time 
Occurs .  

All operations on documents require tha t  the informa- 
tion on the drum be brought into the store. The buffer 
area (d) mentioned above is used in units of 256 words. 
A table is set up giving the drum address corresponding to 
each buffer and showing whether the information in the 
store is an exact copy of what  is on the drum, i.e., does not 
need to be writ ten back. The  number of buffers available 

to the system depends oil the program in core and whether 
the display system is active. A buffer is written onto the 
drum in general only when the buffer is required 
for another drum segment, and this means that  a whole 
series of requests from the programmer may be honored 
without the need to waif, for a drunk transfer. A maximum 
of 32 buffers is used, but  it seems that  for most purposes 
16 is more than sufficient and 5 is satisfactory. 

4. T r a n s f e r  R a t e s  for D r u m  D o c u m e n t s  

Table I gives the transfer rates of one drum logical unit 
for writing and forward reading as a function of record size. 
Figures for the magnetic tapes (Control Data  Model 607) 
are given for comparison. The transfer rates are given in 
thousands of words per second. 

Table I I  gives the transfer rates when there are 10 
logical units reading or writing simultaneously, as a func- 
tion of the number of buffers available. This rather  ex- 
t reme test is noticeably affected by any other activity 
which happens to be occurring in the system, and it was 
difficult to obtain consistent results. Hence the anomalous 
values around 16-18. The transfer rates are given ia 
thousands of words per second. 

5. U s e  o f  t h e  D r u m s  as R a n d o m  Acces s  D e v i c e s  

The  original design of DAD did not provide for the use 
of the drums in any way except via documents. I t  has 
since been decided to incorporate a random access facility 

T A B L E  I. TRANSFER R, ATE8 WITH ONE 
DRUM LOGICAL UNIT 

(in thousands of words per second) 

Record size 
Drum documents Magnetic tapes 

Write Read 800 bpi 556 bpi 

10 2.5 2.5 1.7 1.7 
50 11.5 9.8 2.4 2.4 

100 13.8 10.8 6.8 5.6 
200 15.2 12.2 9.4 7.4 
500 16.2 12.8 12.0 8.5 

T A B L E  II .  TRANSFER R, ATE8 WITH TEN 
LOGICAL UNITS 

(in thousands of words per second) 

Number of buffers Write Read 

2 0.2 0.3 
4 0.3 0.5 
6 0.3 0.5 
8 0.4 0.7 

10 1.0 1.3 
12 1.3 1.3 
14 1.7 1.4 
16 1.7 2.0 
18 2.5 1.4 
20 2.5 2.5 

Volume 10 / Number 9 / September, 1967 Communieations of the ACM 577 



into the system. This allows a programmer to r e q u e s t ,  ~ 
number of consecutive segments which can then b e  ad-  
dressed directly. The random access feature is m a d e  su b .  
ordinate to the document (serial access) use of t h e  d r u m  
and the programmer's request is rejected if the r e q u i r e d  
number of consecutive segments eatmot be located i n  elm 
Free Space List. No attempt is made to reorder the  l i n k a g e  
of existing documents in order to dear a sui table  a r ea .  
However, a random access logical unit of 32 t h o u s a n d  
words is always provided. This can be used by t h e  p ro-  
grammer, and is also used by the system during eompi l i :ng /  
loading attd during recovetT after abnmznal p r o g r a m  

termination. 
It  appears that ,tot many of the users of the  s y s t e m  

employ the random access facility, but it is used h e a v i l y  
by the system itself. In addition to the above eases ,  t h e  
nonresidertt system programs of DAD (DAVE, I N T E R -  
JOB--see Section 8) and compilers (FORTRAN, C O M -  
PASS) in absolute form, and the libraw of c o m m o n  
subroutines in relocatable form, are held as r andom  acce s s  
records on the drum. The display subsystem DAVE,  m a k e s  
use of the feature to provide a rapid overlay s c h e m e  fo r  
disph~y programs. 

A random access facility is thus too valuable to  d i s c a r d ,  
and it should be incorporated into a d o c u m e n t - o r i e n t e d  
system such as DAD. A complete intega'ation of r a n d o m  
access and a dynamic allocation scheme is d i f f i cu l t  to  
achieve, but fixed areas used by the system can b e  al lo-  
cated at start-up time quite easily. The gain in e f f i c i e n c y  
which ~sults from making frequently used s y s t e m  p ro -  
grams into random aeeess records is very great. 

6. I/O Buffering Program 

The I/O buffering program is permanently in core,  and 
carries out three main functions. First, the label o n  any 
reel of magnetic tape is read as soon as it is mourtted, so 
that the system is always up-to-date in its knowledge of 
the tapes available to it. Secondly, all input peripherals are 
serviced, and data read from them is formed into docu-  
ments on the drum. Finally, documents flagged for o u t p u t  
are sent to the appropriate peripheral. The first funct ion  is 
relatively trivial, and will not be discussed further. T h e  
input and output functions are more important. An under-  
standing of these aspects requires some knowledge of  the 
3600 hardware. 

The C.S.I.R.O. installation has a large number and 
diversity of external devices connected directly t o  the 
computer. There is no satellite machine, and communica-  
tion between computer and peripherals is achieved by 
means of data channels, of which there are five. A data  
channel can be directed by the central processing u n i t  to 
initiate a transfer of information, and it will complete  the 
transfer in an autonomous fashion while the central proces-  
sor does further I /0  or computational work. The end of  ~n 
I /0  operation is signalled to the central processor by 
means of an interrupt. It is possible to have this interrupt  

occur at ;~-~, ~,;Mei 2, of pha:ses of the I /O operaiion, ;~i~d 
alsr~ ,(m lh,  ~ceurre~m~ of certain t3pes of error (:onditi~,~. 

The cha~:mds work v, i th  iS-bit words ~s fa, r as the c~ ~n- 
purer is eoncen~ed, and transfer ] 2-bit bytes to or from i !u 
peripheral equipment. After the last, 12-bit byte }uls be,~s 
i, ra~smit[ed, the cha, rmel becomes not busy" (i.e., free >, 
servic~ a further I/O request for the same or an(,t[~e, 
device). The extermd equipment itself, however, remai~..~ 
"busy '  an(i is therefore unable to underl, ake a furl}let  
operati<m for an additional period, The Lime that  ~h, 
equipment remains busy is usually of the order of mah , ,  
milliseconds. This distinction between eharmel-busy a~ut 
equipment,-busy is fundamental to the design of the [ ) A ] )  
system. 

It  is also important to appreclaie the difference betwe~ ~ 
these devices that have a buffer and those that do , ~  
The card reader hi> a buffer which holds a complete ear, t 
image, and although it takes 50msee to read a card th<, 
buffer can be emptied by a data channel in about lmsee .  
Thus tl'le card reader occupies virtually no channel t im{.  
even when operating at :full speed. Similar remarks app] h 
to the printem and card punch, which are also buffered 
devices. By contrast, the unbutt'ered equipments, whiet~ 
are the magnetic tape units, the typewriter, the inerem.e~-. 
tel plotten% t>he paper tape stations, the displays and t, he 
drums each occupy a channel practically full-time. The r~  
is an option on some devices which allows the transfer ~f 
characters rather than words, and this would in prineil4v 
make :it possible to use these devices in a manner whir ~., 
wouM occupy almost no channd time. In practice, how.  
ever, the amount  of interrupt processing and general dea~l 
tirne in the monitor that this would involve make Ihe  
scheme quite unworkable ia that all the central proces,<,~" 
capacity would be utilized to service interrupts. 

In at tempting to maximize the throughput of the per iph-  
erals, we are immediately concerned with the best use oi  
the data  ehannels. There are two aspects to the problem ............. 
firstly, how to allocate all the peripherals between the  
channels, and secondly, how to service I /O requests. O~e  
channel has been kept for the buffered devices (ca.rd 
reader, printetvs, and card punch), so that these import, eels., 
peripherals will never be held up by unavailability of a 
channel. Furthermore, the transfer rate of the drums is so, 
high (two million eharacters pet' second) that a speeiM/y 
built fast data  channel is exclusively reserved for them.. 
'].'he remaimng three eharmels are used by the a l te rnat ive  
connections to the buffered devices and by other I / O  
devices. It, has been found effective to have the plotters o~:~ 
different channels. 

Requests to the monitor for I /O operations are p laced 
in a table which has one entry per I /O device. Besides the  
specification of the operation required, each table er~try 
contains bits indicating what, channels are physieMly wired 
to these deviees. When a channel is free, a sea, n is made fo r  
requests which can be honored by that channel. Th i s  
involves locating a request, checking the status of -the 
device and, if all is well, initiating the operation. " B u s y "  

578 Communications of the ACM Volume 10 / Number 9 / September, 1967 



st~,~tus causes the monitor to try the nex[ request in the 
t~ble. Error conditions such as "not ready" or "paper out" 
similarly cause the monitor to try another request, and a 
message is given to the operators at 10 minute intervals on 
the console typewriter. I'n ger~eral, fai lure in  one device does 
not ca'use the s~jsLem ~'  a ~tvhole to stop. (An exception is the 
console typewriter--failure there causes complete stop- 
page with an indication in the console lights.) This tends 
to ease the burden on the opera:~ors. 

Requests for operation on some of the unbuffered de- 
vices (paper tape reader and punch, plotters, and type- 
writer) are "partitioned," i.e., cut up into shorter transfers. 
This reduces the Channel busy time and also allows other 
devices an occasional quick opportunity for service by the 
channel. A series of one word transfers to a character 
device such as a paper tape punch occupies the channel for 
-} of the time. A series of two word transfers uses ~ and so 
on. Hence the cutting up of long transfers into shorter 
ones provides a small but worthwhile opportunity for 
other use of the channel. If a scan down the request table 
fails to locate an operation which can be started, the 
channel is left unused. In principle, in the 3600 hardware 
there is a means whereby an interrupt can indicate to the 
monitor that a peripheral device has become available for 
a further operation--the interrupt on "Ready and not 
Busy." In practice, it has been found impossible to use this 
facility, chiefly because of the difficulty of avoiding the 
interrupt when it is not wanted, i.e., during data transfers 
on another device on the same channel. Instead the system 
relies on repeating the whole scan at frequent intervals, in 
fact at every entry to the monitor. A time interrupt every 
100msec is used to cause an entry into the monitor and a 
scan of the request table. This means that the printers and 
card reader will run at not less than 600 records per minute, 
which is not full speed but is satisfactory. If the main 
program is causing entries to the monitor in addition, the 
printers and card reader approach full speed. This scheme 
is not very elegant, and it is also inefficient. A scan of the 
request table can take 2-3msec if many requests are pend- 
ing. When a great deal of peripheral activity is going on, 
many interrupts occur every second, and hence there are 
many request table scans. In this way, more than 50 
percent of the central processing unit's capacity can be 
used in servicing interrupts. A means of limiting the mini- 
mum time between scans to 8msee has been added, and this 
has given an adequate throughput potential with reason- 
able overheads (see below for details). 

The I/O buffering program (BACKGROUND) is writ- 
ten .almost completely in a reentrant fashion. Each branch 
of the program controls one peripheral device. Control 
passes to BACKGROUND in the first place by means of a 
time interrupt occurring every two seconds. The similarity 
to the technique employed on ATLAS [5] will be noted. 
At this time every peripheral not already in use is 
examined. If a peripheral is four~ to be in a "not ready" 
condition, it is ignored, but if "ready" is signalled BACK- 
GROUND attempts to use the device. ("Ready" means 

that no fault condition exists and that the operator has 
pressed the "Ready" button.) 

If the device is an input peripheral, "ready" indicates 
that the operator has loaded some data (cards or paper 
tape) for input. Tile first record is treated as a control 
statement or "header" giving the document name which 
is to be attached to the data following, and specifying 
what translation process is required to turn the data into 
internal BCD code. Punched cards can be read as 20-word 
"binary" cards (i.e., untranslated) or 10-word "BCD" 
cards (translated from Hollerith code by the card reader 
hardware). Paper tape can be read in six modes, which 
include parity checked/unchecked, I or 6 or 8 characters 
per machine word, and translation from the code used by 
our paper tape preparation equipment. The last option 
and packing six characters per word are performed by 
software, while all the other facilities are provided in the 
paper tape hardware. 

After reading the header, input of the document is 
initiated. Since a paper tape document may have to be 
physically separate from its header (because it is a different 
width), reading stops before commencing the input of a 
paper tape document. The operator must indicate that the 
paper tape has been mounted by pushing "Not Ready" 
followed by "Ready" about two seconds later. Input then 
continues until a special control statement, "end of docu- 
ment," is read, or until some error condition indicates that 
the input should be abandoned. 

When BACKGROUND discovers that an output device 
has become "Ready," it searches for a suitable document 
to output. Documents awaiting output are queued in two 
serial lists on the drums, (OLI and OL2). Each list contains 
the names of documents awaiting output, and the type of 
device to which they are to be sent. OLi is always scanned 
before OL2 and therefore is the Priority Output List. A 
document goes into OL2 if its length exceeds 50 256-word 
segments. This criterion is crude but works quite well. The 
output capacity of the system is greater than the comput- 
ing power can cope with, and thus the above priority 
scheme is not critical. By the same token, it would have 
been more sensible to reverse the scanning procedure, i.e., 
to look for a suitable device only when a document for 
output was discovered. The system was designed on the 
assumption that the output peripherals would always be 
kept busy, and is somewhat wasteful in the situation that 
actually exists. 

When the system discovers a suitable document in OLI 
or OL2, output commences. Information within the docu- 
ment gives the external code into which the document 
must be translated, if this is relevant. 

The system pauses (awaiting the operator's "Not 
Ready"-"Ready" signal) before plotter output, directing 
the operator via the console typewriter to set the pen 
position. It is also possible for the programmer to select 
l-part, 2-part, 4-part, or special stationery on the line 
printers, and the system keeps track of the type of paper 
mounted on each printer. If a document requires reloading 

Volume 10 / Number 9 / September, 1967 Communications of  t h e  ACM 579 



of a printer with a new type of stationery, !:he system gives 
the required type on the console typewriter mid pauses 
mvaiting "Not  Ready'  ....... t{eady." ])urir~g l~hese pauses the 
system as a whole does not stop; inpttt and output ccm- 
tinue but no fresh outl)ut br~mehes will be activated. 
Again, this eases the operator's task. hy allowing the re- 
quired action to be performed more or less at leisure. 

Output, once started, continues autonomously. Error 
conditions, such as paper running out on a printer, cause 
an operator message and stoppage of the bratmh concerned. 
The operators can terminate a runaway output operation 
by typing in a directive on the console typewriter. They 
also have an option which allows them to terminate an 
output operation saving the document on the drum. This 
allows, for example, rerunning of a plot where the pen has 
run dry. When all of a doeurnent has been output, the 
peripheral is returned to the pool of available devices 
In general, the document is removed from the drum, but 
it can be saved if tlhe programmer wishes. Confusion be- 
tween successive decks coming from the card punch is 
avoided by directing the operator to clear the punch at 
the end of a card output doeurnent, and pausing until he 
has indicated by "Not  R e a d y " - " R e a d y "  that  tie has done 
so. 

I t  has already been stated that BACKGROUND is 
ahnost completely reentrant. I t  has not been possible to 
make it completely so, because various nonreentrant 
bottlenecks exist. For instance, two branches may ahnost 
simultaneously require to use the typewriter to output 
error indications or directives. In this ease, the second 
branch nmst cease all activity, and becomes "held-up." 
The held-up branch attempts to restart at the next two- 
second interrupt. Another bottleneck which causes non- 
reentmnt behavior exists in the system queues (e.g., OL1 
and OL2), and the treatment of the loading of new sta- 
tionery types on the printers has been written in a nonre- 
entrant fashion for reasons subsequently found invalid. I t  
seems that  we have made a basic error in design phik)sophy 
in not trying to reduce nom'eentrant code to a minimum. 
It, was assumed that the type of paper on the printem 
would not be changed often. This is largely true, but if the 
operator happens to overlook the message to change paper, 
all output devices gradually become idle. A similar error 
has been made in the input half of BACKGROUND,  when 
in some circumstances the system refuses to process any 
fresh documents, and in various situations in which display 
users cannot log into the system because system lists must 
temporarily be frozen. The above examples can be divided 
into two categories--nonreentrant behavior implicit in the 
design or in the hardware, and nonreentrant behavior 
introduced as a convenient way of dealing with circum- 
stances that it is hoped will occur infrequently. Our ex- 
perience indicates that the latter class should be avoided 
entirely, and the former cut out wherever possible. 

7. B A C K G R O U N D  Overheads  

BACKGROUND incurs overheads in three ways. First, 
there is the scan of peripherals awaiting "ready" status. 

,werhe~,]. Sec~)~ldly, once ar~ awdl:~bte peripheral t~as }}~ ~: 
fomld~ :~ ~eareh is made irk Of, for documen£s au~i t i~ ;  
(~mput, and thirdly, when a document is found its out p~:~ 
will c<nm~me. Table HI shows the per(:ent:tgo ~werh<>j 
aS a i'q~t(:lioI] ()[ t[to rn~.lllbor of sbnulttme~ms it,put <~r ,,~a~ 
put ol~el'ath~r~s occurring. "I'}lc, entry for zer(~ ot~e~'~ 
tions gives the cost of the 0I~ scans for 6 :~v:~ilable outb~at 
devices, The percentage is calculated from ] 00(X ...... } ' }  ')(. 
where Y is the time required for ~ long instrnction t~i,, 
when. [~o interrupis are oeeurrh,g and X is lhe time re  
quired for the same loop running under DAI) wills variou, 
amounts of BACKGI{0[TND activity. 

8. Job  Execu t ion  

Job execution is under the control of a part C the I )AI 
monitor called INTERJOB. INTEI{JOP, is [loni'esJtlc~t 
and is brought from the drum as a single absolute record 
at the end of every program run. INTEI{JOtl  will f~r~ 
recovery dumps after abnormal run temdnation, pro(:luc~. 
accounting information at the end of a job, and tmload 
magnetic tapes and delete drum documents as required. 
The important; task of deciding which job to run next i::~ 

then started. 
The nanms of documents awaiting execution are held ira 

two special lists, EL1 and EL2- -drum documents aecessi. 
ble only to the monitor. Scanning is rather similar to the 
scanning of the Output Lists OIA and OL2, in that EI~I i~ 
Mwttys looked at first. I N T E R  JOB takes the first et~tr:~ 
from EL1 and finds out if the document given exists and i~ 
not being opera.ted on by some other part of the syste~ 
(l: ACK(H/OI)'NI) or the displays). If so, the doeunwni 
itself is scanned to find out what magnetic tapes and (h'u*~a 
documents must also be available, this information t)ei~,g 
contnined on control cards which must be the first record:~ 
of the document. In the case where some required item i> 
missing, a message goes out to the operators directing the~ 
to fetch the missing tape or doemnent, and the job is the*~ 
abandoned, but left in the Execution List. INTEIIJ()t~ 
then proceeds to try successive entries ia EL1 and thea i~ 
EL2 until a job is found which can be successfully started. 
Once more, this system was designed to help the operator:~. 

Entries a:re placed in EL1 or EL2 by three me:axis 
Firstly, documents being input by BACKGROUND may 
have as their "header" record a special control stateme*~t 
indicating that the document name is to go into the, 
Execution List and giving the expected running time h~ 

TABLE II[ 

Nualber of BACK- 
I/O GROUND 

operations overhead (%) 

0 3 
1 8 
2 12 
3 20 
4 25 
7 50 

580 Comnmnications of the ACCM Volume 10 / Nmnber 9 / September, 1967 



minutes, i\Iost d<)euments handled by I{ACKGR.OUND, 
especially c~'d reader doctuTlentis, are of this type. 

Secondly, display users may type in. an "EXECUTE" 
request, giving the name of a document already on the 
dcum and a,l csthnate of the running time. Thirdly, jobs 
arrive in Can berra from the subsidiary computer centers at 
Sydney, Melbourne, and Adelaide, as magnetic tape job 
stacks, and are unloaded and formed into drum documents 
by a special part of tlhe system, which also puts entries 
into EIA or EL2. 

The decision whether to put a job in EL1 or EL2 is 
made purely on the basis of the estimated running time 
supplied by the programmer. If this is 4 minutes or less, 
a job goes to the end of EL1; otherwise, to the end of EL2. 
The effect of this crude system is to give program develop- 
ment and display usage a better turnaround, but it is 
fairly common to find that EL1 has an hour's work queued 
up. Because of this, a further level of priority is being 
developed ("BREAKIN"), in which a low-priority pro- 
gram can be suspended temporarily while a high-priority 
program is run. BREAKIN will be particularly useful in 
improving the response of the system to display users. 

37o illustrate the path of a simple job through the system, 
consider a FORTRAN job consisting of a card deck con- 
raining control cards, FOnt"RAN source language cards and 
data cards. As the card deck is input through the card 
reader, the background program interprets the header 
record, forms the rest of the deck into a drum document, 
and closes the document when the "end of document" 
control card is found. The information in the header is 
used to form the MDL entry and to enter a request for 
execution into EL1 or EL2. At some subsequent time, the 
request reaches the top of the queue, and INTERJOB will 
then start the job by interpreting the first record of the 
document. This will be the Ii'ORTRAN control card, and 
INTER JOB responds by calling in the FOre'ELAN eolnpiler 
and passing control to it. The job will then proceed through 
the various stages of compilation, loading and running as 
under the previous monitor, SCOPE, except that  scratch 
units (such as those used by the compiler) are drum docu- 
ments rather than magnetic tapes, and output from the 
job is formed into another drum document. When the job 
terminates, all logical units used by the job are released by 
the monitor and an appropriate output request is entered 
into OL1 or OL2. After a further period (often almost 
immediately), the background program services the out- 
put request by unloading the document to a printer and,  
when finished, the document is released. Many variations 
to this simple sequence of events are possible. The output 
arid input documents could have been saved for inspection 
and editing by means of the displays (see later), the data 
could have been a separate document input from paper 
tape or produced by a previous job and saved, or the job 
could have used magnetic tapes, and so on. 

Besides the main system documents referred to earlier, 
INTER JOB uses four further logical units, COD, ACM, 
OCM, and OIL. COD is a drum document which contains 

all the charge codes currently w~lid, and is used to prevent 
a job from starting which has an unknown accounting 
code. COD can be updated by the operators at any time 
during the day. Accounting information is output oil 
ACM, which is a 1t0 char/see paper tape punch, online. 
Each job produces about 20 characters of output, giving 
the charge code, date, and the time used which is in fact 
the central processor time plus a surcharge for input and 
output. Operator messages are output on OCM, which is 
the console typewriter (15 char/see), also online, and in- 
formation (rather than directives) for the operators is 
printed on the Operator Information Log (OIL), which is 
a 150 line/min printer, online. These three devices all 
cause nonreentrant behavior to some extent, but the type- 
writer is the slowest, and the nature of its messages causes 
it to be the most serious from this point of view. It  would 
appear that a system like DAD needs a fast device such as 
a cathode-ray tube display to convey messages to the 
operators. 

9. D i sp lay  S u b s y s t e m  

Operation of the DAD system is basically controlled by 
means of the system documents MDL, OL1, OL2, EL1, 
and EL2. The display subsystem (DAVE) is able to access 
these lists, and a display user may make requests which 
result in changes to them. The "EXECUTE" request has 
already been discussed. In addition, a display user may 
make "PRINT", "PUNCH", and "PLOT" requests 
which put document names into OL1 or OL2 and eventu- 
ally cause the required output to occur. The display user 
may also "DELETE" a document, which removes the 
document's entw from MDL and deletes the information 
from the drum. Finally, there is a most useful request, 

FIG. 1 

Communicat ions of  the ACM 581 Volume 10 / Number 9 / September, 1967 



"LOCATE", which ascertains whether the specified docu- 
ment is on the drum or being used by some other part of the 
system, and the estimated time mttil i,tle doeument~ will 
commence execution if it appears in EL1 or EL2. These 
requests make it possible to observe and influence the 
operation of DAD from the remote consoles, and make the 
displays a well-integrated part of the whole system. 

In addition there is provision for a display user to call in 
a display library program by name. The initi~l request 
form which appears on the display screen is illustrated in 
Figure 1. The user may respond by typing in his charge 
code, the name of a display program and the time required, 
in the upper portion of the screen, or by requesting an 
operation on a drum document in the lower portion of the 
screen. Display programs are special library programs that 
generally require only a few tenths of a second to process a 
console interrupt. They may be written in FORTRAN or in 
assembly language with the primary restriction that they 
require no more than 2000 words of core store for execution. 
A random access overlay scheme is available for lengthy 
programs such as the FORTRAN interpreter. 

Display programs are run under the control of a small 
optionally resident display monitor (DAVE)which is 
responsible for swapping display programs and servicing 
their I /O requests (via DAD). A nonresident portion of 
DAVE initiates display programs and provides recovery 
dumps if they terminate abnormally. Display programs 
have priority over the main job but they, in turn, can be 
interrupted by the background program. 

Currently there are twelve display library programs, 
ranging from simple demonstrations and engineering tests 
(e.g., NIM, CORESNAP, KEYTEST) to a general pur- 
pose statistical package (STATIST), a FORTRAN inter- 
preter (INTERP) [4, 6], and a general purpose document 
editor (CIDER) [3, 6]. The latter program may be used in 
connection with the testing and debugging of main jobs. 
After the program under test has run, its output may be 
inspected and the input document modified by using 
CIDER. A new EXECUTE request is then made, and the 

TABLE iV. JOB STATISTICS DUIgING CHANGEOVEI~ 
FROM SCOPE TO DAD 

Charged time Number of ~ Average job 
Month of I966 per day (hours) jobs per day time (minutes) 

Jan. 12.50 236 3.18 
Feb. 15.60 255 3.67 
Mar. 14.80 258 3.44 
Apr. 15.80 247 3.84 
May 18.50 245 4.53 
June 13.25 242 3.29 
July 17.75 307 3.47 
Aug. 15.75 336 2.81 
Sept. 11.25 357 1.89 
Oct. 15.70 312 3.02 
Nov. 19.60 407 2.89 
Dec. 16.80 395 2.55 

job runs again. In this way a. display user may ha.ve m:~ny 
test runs in the course of a single day without h:Lving to 
resubndt ~ cttrd deck. 

Typic~Hy a user will spend a half hour or so ereati~g a 
doeumettt or interpreting a Fore'naN program, using of ~;he 
order of ten seconds of central processor time. In one 
recent month, display progra:ms accounted for 25 percent 
of the totsd number of jobs and, at the same time, used 
less than 1 percent of the accounted central processor time. 

1O. Efficiency of Sys tem 

It  is difficult to accurately assess what has been gai~ed 
by the changeover to the DAD system. The previous 
monitor was not intended to run a system with many slow 
devices online and was obviously inefficient when dealing 
with our peripherals. Hence, a comparison of computer 
usage statistics before and ~ffter the changeover does not 
give a fmr estimate of the worth of DAD. Furthermore, the 
DAD priority scheme favors short jobs and seems to have 
influenced users to submit more jobs of less than 5 minutes 
duration. 

Table IV gives the number of jobs run by the C.S.I.R.O. 
installation, and the useful time, for each month of 1966. 
Note that DAD became the official monitor at the end of 
June, but that  an increasing amount of DAD runs occurred 
from March to June, and some SCOPE runs occurred 
after June, and also that the times given are the charged 
times, which from October include the surcharge for 
peripheral use. This surcharge appears on the average to 
increase the actual CPU time by a factor of about 1.5. 

11. Development  of t h e  S y s t e m  

The DAD system was developed by a very small team 
of programmers. Three people worked on the project 
virtually full time for two years, and several other people 
were involved for short periods. The cost in programming 
effort is estimated as less than 10 man-years, the smallness 
of this figure is attributed to the approach to system de- 
velopment which was adopted. 

Much of the development had to be done before the 
drums were delivered, and this forced us to adopt simula- 
tion techniques. We also elected to develop much of DAD 
as a normal job, running under the control of the existing 
monitor. Thus, for the price of a small simulation package 
which imitated machine features such as the interrupt 
system, the full debugging facilities of the existing monitor 
were obtained, eliminating a lot of push button work at 
the computer console. When the time came to take over 
full control of the computer and to operate the peripherals 
directly, a cyclic "log" was maintained in core of all the 
peripheral commands with other relevant information such 
as the computer clock and tile equipment status. At this 
stage, a development run normally consisted of a few 
minutes of testing of peripheral facilities, followed by a 
core dump. The log could then be studied at leisure, and it 
enabled us to locate program bugs very quickly and also to 

582 Communications of the ACM Volume 10 / Number 9 / September, 1967 



pinpoint h~rdw~re fa, ults and unsuspected design peculiari- 
ties. The t~g was especially w~luable when odd effects 
showed up only" in~:ermittently. When a h~rdware failure 
occurred, i{; was often possible to extract, a sequence of 
peripher:~[ instructions directly from the log, and turn 
them into a simple test program good enough for the 
engineers to locate the trouble. 

As Ires been mentioned, the development work was well 
advat~eed before the drums arrived. A magnetic tape was 
used to simulg~te a 32K drmn, and by the time the drums 
were delivered, DAD was a running, if primitive, system. 
The code which actually carried out drum transfers had 
not been tested, ~md proved to contain one bug. We were 
ruble, however, to have DAD running on a drum one and a 
half hours after the engineers had declared it usable, and 
this demonstrates the merit of the approach. 

112. F u r t h e r  F a c i l i t i e s  

Work on additions to DAD is still continuing. A 
"SttUT-DOWN--STAI~TUP" system has recently been 
completed, whereby the contents of the drum can be 
saved on tape at the end of a day's work and restored the 
following morning. When the DAD system started opera- 
tion with only 500,000 words of drum store, trouble fre- 
quently occurred due to drum overflow. Now there are one 
million words of drum, and the difficulty had largely dis- 
appeared until the shutdown--startup system was imple- 
mented. This has caused the drum to become populated 
with data that the owners have forgotten, and therefore a 
scheme to clear the drum of old documents is being de- 
signed. With the current job mix, which does not include 
many programs with huge print output, it is common for 
documents to last a whole day but usually to be purged the 
next. About the middle of this year a 100 million character 
disk will be delivered which will be used as a mass docu- 
ment store. A current weakness of the system is that if 
certain types of hardware or other errors occur, the content 
of the drum is lost completely. I t  is an essential design 
aim in incorporating the disk into the system that its 
contents must be preserved despite such disasters. 

A further feature to be incorporated shortly is an opera- 
tor option to reorder EL2. We now have some experience 
in the running of the system and feel that this would 
provide a useful gain in efficiency and operating conven- 
ience. The system has a changing set of priorities during a 
day's work. Priority is given to local work for the first 
eight hours of operation, but during the evening, work from 
the C.S.I.R.O. subsidiary centers in Sydney, Melbourne, 
and Adelaide takes first place. Also, special circumstances, 
such as the buildup of a large backlog of plotting, may 
indicate a particular strategy as most appropriate. To 
cater to the above, an option is being added whereby the 
operator can specify the type of job which is to be favored, 
EL2 will then be sorted (EL1 is considered not worth 

treating) on the basis of the strategy given, and jobs will 
then be run in the order they appear. 

The BREAKIN option being developed will enable a 
high priority job to oust a longer job of lower priority from 
control of the computer. This should not be confused with 
the time sharing already in operation in the display sub- 
system DAVE. This BREAKIN option will facilitate 
economical use of the 19-in. graphical display unit by 
allowing main programs to be swapped, and will allow 
programmers editing and requesting execution of main 
jobs through the character displays, a faster turnround 
time. 

Acknowledgments. It is obvious that a system such as 
DAD is very much the result of a team effort and that 
ideas have been contributed by a great many people. The 
system has been realized as a result of cooperation between 
the C.S.I.R.O. Computing Research Section and Control 
Data Australia. The authors would like to acknowledge in 
particular the work of I. Wadham and N. Heal (Control 
Data Australia). 

Among those participating in the early discussions on 
the DAD system were people originally from a number of 
computing centers in the United Kingdom and the United 
States, including the Mathematical Laboratories of Cam- 
bridge and Manchester Universities, the Jet Propulsion 
Laboratory, and Stanford University. It is obvious that 
we have incorporated into the DAD monitor ideas which 
came from the operating systems of these places, but which 
we cannot acknowledge separately or adequately. How- 
ever, particular mention should be made of the TITAN 
Temporary Supervisor, written by H. P. F. Swinnerton- 
Dyer of the University Mathematical Laboratory, Cam- 
bridge, England. 

RECEIVED MARCH, 1967; REVISED MAY, 1967. 

REFERENCES 

1. PEARCEY, T., AND KERR, R.H. Adapting to the next phase of 
computer usage. Proc. Third ANCCAC Conf., Canberra, 
Australia, May 1966, pp. 275--281. 

2. AUSTIN, B. J., AND HOLDEN, W.S. The development of a drum 
and display monitor. Proc. Third. ANCCAC Conf., Canberra, 
Australia, May 1966, pp. 286-289. 

3. KERR, R. tI., AND KAROLY, G. The utilization of keyboard 
display consoles in a conventional operating enviromnent. 
Proc. Third ANCCAC Conf., Canberra, Australia, May 1966, 
pp. 389-392. 

4. FROST, P. II., AND LANGRIDGE, D.J. A FORTRAN interpreter 
for use with on-line displays. Proc. Third ANCCAC Conf., 
Canberra, Australia, May 1966, pp. 345--347. 

5. KILBURN, T., PAYNE, R. B., AND HOWARTH, D.J. The Atlas 
supervisor. Proc. AFIPS 1961 Eastern Joint Comput. Conf.. 
20, Dee. 1961, pp. 279-294. 

6. DAD system programmers' manual. C.S.I.R.O., Canberra, 
Australia, July 1966. 

Volume l0 / Number 9 / September, 1967 Communications of the ACM 583 


