CQS.I.’R.O"

DIVISION OF COMPUTING RESEARCH

MANUAL SUPPLEMENT 33 (EDITION 3)

Supplements 3600 Fortran Reference Manual (Pub. No. 60132900)

KWIKTRAN
A Version of -the Control Data 3600 Fortran System
Modified for Fast Translation and Rapid Loading

under the TWO~bank DAD Monitor

by

R.H. Hudson

Division of Computing Research

December 1971

Mgnual Supplement 373

CONTENTS

1 INTRODUCTION

2 KWIKTRAN OPTIONS
2.1 EXAMPLES

3 FORTRAN COMPATIBILITY
L TIMING CONSIDERATIONS
5 EXAMPLES OF DECK STRUCTURE

APPENDIX 1
A1 ARRAY BOUNDS CHECKING

APPENDIX 2
A2 DIAGNOSTICS

APPENDIX 3
A3 KWIK AND RELOCATABIE
BINARY DECKS
A3.1 KWIK DECKS
A3.1.1 BINARY KWIK CARD
FORMATS
A3.2 RELOCATABLE BINARY DECKS

APPENDIX 4
AL KWIKTRAN LIBRARY ROUTINES

1/1
2/1

2/3

3/1
b/1
5/1

A1/1

A2/1

A3/1
A3/1

A3/2
A3/h

AL/1

c/1

Msnual Supplement 33 : 1/1

INTRODUCT ION

With the Control Data 3600 a normal Fortran program goes through
three major phases before entering the execution phase,
compilation (FORTRAN), assembly (COMPASSX), and loading (DAD
LOADER). The last two phases, because of their extreme — but
seldom used — generality, are inefficient for most purposes.
The KWIKTRAN system replaces these phases by using a fast one—
pass assembler that generates absolute code. The name Kwiktran
does not imply that a language with a different syntax is
involved. On the contrary, for ease of system maintenance, the
identical Fortran source language compiler is used in both
KWIKTRAN and FORTRAN—COMPASSX—LOADER. The user is therefore
referred to the Control Data Fortran Reference Manual for a
description of the language. ~ ’

There are, of necessity, differences between the two systems:
The different interpretations of some of the control statement
options are described in section 2, the minor differences
concerned with storage allocation and table limits are described
in section 3, the difference in speed is described in section

.

The ma jor difference between>the two systems is that with
Kwiktran it is not possible to use overlays or snap dumps.

'Manual Supplement 33) 2/1

KWIKTRAN OPTIONS

The Kwiktran system is loaded when a *KWIKTRAN (or *KTN) control
statement is encountered. All fields are free—field, that is, :
blanks are ignored. The options defined below may appear in any
order but must be separated by commas. A terminating period is
optional as a field may also be terminated by the end of the
record (e.g. a card). Unrecognized options and extraneous
characters are ignored. An option may be followed by =n where n
represents the logical unit number. If n is 0 or not numerically
defined, the option is ignored. '

The table below lists the options and also indicates whether
the Kwiktran meaning of the option is the same as (s) or
different from (d) the Fortran meaning. The N and T options are
not available using Fortran.

OPTIONS OPTION ALONE n IS NUMERIC
L (s) List source language List source language
program on unit 61. program on unit n,
1—-59, 61.
P (a) Ignored - Ignored
x (a) No load—and—go is No load—and—go is
generated but the generated but the
option must be option must be
present for execu— present for execution
tione.
A (a) Ignored Ignored
I (s) | Input source from Input source from n,
unit 60, same if 1—59, 60,
option 1s not present.
(@) Ignored - Ignored
N Suppress check refer— Suppress check refer—
ences to subscripted enceg to subscripted
variables. variables.
T Trace program execution Trace program execution
on unit 61 (operates on unit 1-59,61.
only if N absent) .
B (a) Unit number, n, must Generate KWIK cards
be designated. on n, 1—-59, 62. See
explanation below.
* (s) Compile code for one Compile code for one
bank., Same if option bank. :

is not present.

Manual Supplement 33

R (a)

D (s)

F (s)

Q (s)

List all generated
symbols and their
absolute locations
on the unit specified

by the L option.

List compilation
diagnostics on unit
61, same if option
is not present.

Crack format state—
ments at execution
time, If option not
present formats are
cracked at compile
time.,

Plant actual para—
meter addresses with
QBQRESID. If option
not present in—line
code is generated to
plant addresses,

2/2

List all generated
symbols and their
absolute locations

on the unit specified
by the L option.

List compilation
diagnostics on n,
1-59, 619 '

Crack format state—
ments at execution
time. -

Plant actual para—
meter gddresses with
QB8QRESID, ‘

If the N option is not present Kwiktran will geﬂerate code to
check that references to subscripted real or integer variables
are within the declared array bounds. Constant subscripts (eog.

A(10))

are checked at compilation time. Subroutine references

to arrays given asformal parameters are not checked, If the N
option is present the in—line coding is not generated. If not

present the checking costs three words and 6.8us per test plus
six words per subroutine and one word per statement label to
keep track of the current position in the program. The N option
should be used for production programs.,

If the T option is used (N must be absent), a flow trace of the
executing program or subroutine will be printed. Printed output
consists of

statement labels as they are encountered
routine names as they are called

the symbol > to indicate return from a routine
to where it was called from

Care should be exercised when using this facility as printer
output may be excessive particularly in connection with high—
order DO—loops. If output is on 61, the trace output and
program output will be interleaved.

The KWIK cards produced by the B option are logically
equivalent to source decks and any source subroutine may be
replaced by its corresponding KWIK deck,

Manual Supplement 33 2/3

KWIK decks are generally intermediate in size between
relocatable bilnary and source decks. The compilation speed can
be up to twice that source statements. Details are given in
Appendix 3.1.

As with Portran, Kwiktran options may be changed from
subroutine to subroutine. INTERJOB control cards (e.g. *PTN,
*COMPASS, *EQUIP, *LOAD) other than *KTN or *KWIKTRAN should
not generally be present between subroutines.

Examples

(1) *KTN,L,X,N,R

is interpreted as

I: Source program is on logical unit 60, i.e. 1mmed1ately
after the "KTN statement.

L. Listingof source program and diagnostics is to be on
logical unit 61.

Execution is to be gttempted,

References to subséripted variables are not to be
checked.,

R: A symbol table is to be listed on logical unit 61.
(2) *KTN,I=10,B=20,D=11., ANY COMMENT MAY APPEAR HERE

is interpreted as

I: Source program is on logical unit 60,

L. Listing of source program is to be on logical unit 10,

B: KWIK card images are to be written on logical unit 20.

D Compilation diagnostics are to be written on logical
unit 11.

«- Period is an optional record terminator.

(3) *KIN,I=10,N,X
is Interpreted as

I3 Source program, which may be in either Fortran, KWIK
or relocatable binary, is on logical unit 10.

N« References to subscripted variables in either Fortran
or KWIK routines are not to be checked.

X Execution is to be attempted.

Manual Supplement 33 ' 3/1

3 FORTRAN COMPATIBILITY

A correctly written source program will give identical answers
whether run with the FORTRAN—LOADER system or with Kwiktran.
However, the program elements will be distributed differently
in the store so that malfunctioning programs may produce
different results. In particular, Kwiktran divorces all data
arrays from actual machine instructions. The library routines
are loaded as one absolute block in the high end of store. Data
arrays are assigned addresses below the library as they are
encountered. Subprogram instructions as they are encountered _
are assigned ascending locations beginning at location 768, The
storage layouts in the two systems are shown in Figure 1. Di,
Ci and Ii are respectively the arrays defined by DIMENSION
statements, the arrays defined by COMMON statements, and the
executable machine instructions in subroutine Pi. The Li are
the library subroutines required by the user routines.

Fortran Kwiktran
777768 . ,
11
i ' D1 Kwiktran
é library
12
D2
D1
L1
C1
L2
D2
L3
Cc2
C1
Cc2 memory
available
memoxry 12
available
I1
ikooB | | ...
Teserved area reserved area

Figure 1. Storage Allocation (Bank 1)

Manual Supplement 33 - 3/2

The major consequences of this storage assignment scheme gre
the following.

(a) The total storage available is less with Kwiktran since
all its library subroutines are always loaded (see Appendlx
L), The length of the Kwiktran library subroutine block is
approximately 9000 words. This penalty is moderated by the
fact that a short Fortran program with BCD output requires
about 2700 words of library subroutines. The more library
subroutines used the smaller the penalty.

(b) If a common block is defined with different lengths in two
or more subroutines, the subroutine with the largest block
length must appear first in the source deck; otherwise a
fatal diagnostic will be printed.

(¢) With Portran the user can assume, although this is bad
practice, that contiguous arrays in DIMENSION statements
will be contiguous in the store, Thig is not true in
Kwiktran., The correct procedure is, of course, to enforce
the assumption with an BEQUIVALENCE statement,

(a) A11 arrays both local and common are set to zero at the
start of execution.

(e) Numbered common may be preset. (Note: +this is not allowed
in Fortran and is therefore bad practice.)

The remaining Kwiktran differences derive from the method of
assembly and the method of linking user—defined subroutines. In
the assembler the simple method of fixed—length tables has been
used since this type of table can be treated much faster than
the more general linked table. The sizes of the relevant tables
are given below, to date, no user-program is known to have
exceeded the limits,

(a) Total number of compiler generated symbols, statement
labels and variable names per subroutine: 1536,

(b) Literals (constants not appearing in DATA statements) per
subroutine. 512,

(¢c) Total number of user subroutine entry points. 150,

(d) Maximum number of 'undefined' external symbols during
compilation. 110,

(If subroutine ALPHA calls subroutine BETA and ALPHA
precedes BETA in the source deck there is one undefined
external, if BETA precedes ALPHA there are no undefined
externals). A1l references to library subroutines are
defined. ‘

e

Manual Supplement 33

3/3

Ttem (4) above implies two further subtle restrictions. If a
user—subroutine has an entry point with the same name as an
entry point in the system library routines, it myst appear in
the source deck before the calling subroutine. O'herwise the
address of the library routine entry point will be substituted.
In conjunction with this warning the next paragraph is taken
verbatim from the 3600 Fortran manual.

The following 3600 functions will be coded in—line rather than
called as closed routines. The closed function may be obtained
by the appearance of the name in an EXTERNAL statement. If any
of these function names appear as actual parameters, they must
also appear in an EXTERNAL statement.

ABS or ABSF TIABS or XABSF DBIE REAL

SIGN or SIGNF ISIGN or XSIGNF AIMAG DABS
DIM or DIMF IDIM or XDIMF CONJG
FLOAT or FLOATF INT or INTF CMPLX

The moral td be drawn from the above two paragraphs is obvious:
avoid library subroutine names for user—subroutines.

A full 1list of the system library subroutines and their entry
points is given in APpendix 4.

There is one final size restriction. The executable code per
subroutine should not exceed approximately 12000 words. Since

this will generally allow of the order of 2000 executable source

statements per subroutine it is unlikely that the restriction

will ever be noticed.

Manual Supplement 33 | b/1

TIMING CONSIDERATIONS

source routines can be compiled and loaded at rates of 2000 to
L4000 statements per minute. In favourable conditions the
equivalent KWIK decks can be assembled and loaded in half the
time, The time required by K iktran to reach the execution

phase is generally of the order of 1/5 that required by FORTRAN—-
COMPASSX—LOADER (1/8 was observed in a job loading a 10,000~
word array by DATA statements). :

Kwiktran can generally compile and load a Fortran program about
twice as fast as the DAD LOADER can link and load the
relocatable binary program produced from the same Fortran
program by the Fortran compiler. For very large programs the
speed advantage is reduced so that the DAD LOADER is about as
fast as the Kwiktran compiler and loader.

KWIK decks can be assembled and loaded even faster. In one
comparison with a Fortran source deck, the Fortran job
terminated in the middle of the loading phase with "time limit
exceeded", the Jjob time limit being two minutes. The equlvalent
KWIK decks began execution after 13 seconds.

For maximum speed, jobs should consist of short subroutines of
up to approximately 200 source statements each. For jobs of

this type, Kwiktran requires no intermediate drum units (as
opposed to the two required by FORTRAN and COMPASSX). For longer
subroutines, Kwiktran will use one intermediate drum unit.

As an illustration, a Fortran program was loaded by each of the
available methods. The table below compares the number of cards
in the deck, the number of drum sectors used and the time from
the start of compilation to the end of loading. The program
used had a main program and thirteen subroutines and contained
771 statements and 625 comment cards. The total program length,
excludlng common arrays, was 3824 words.

METHOD OF COMPITATION AND LOADING TIME DRUM CARDS
(s) (sectors)

N rmal Fortran 141 61 1396

Kwiktran 22 62 1396

KWIK 14 61 752

Relocatable binary loaded by Kwiktran 8 31 385

Relocatable binary loaded by LOADER 22 31 371

Absolute binary loaded by *LOADMAIN L 32

Manual Supplement 33 5/1
\“&%‘«n
| 5 EXAMPLES OF DECK STRUCTURE
| (1) *JOB,charge code,ident,time limit
! *KTN,L,X
PROGRAM
coe Fortran source code
| END
- SCOPE
*TOAD
*RUN,time 1limit, print limit
oo data
*BEOD
In the above example all the routines to be compiled and run
accompany the job. Array bounds checking is to be incorporated.
(2) *JOB,charge code, ident, time limit
*KTN,L,X
PROGRAM
- oo Fortran source code
é END
IDENT

s s o

cos KWIK and/or relocatable binary routines

o 0 e

SCOPE
*LOAD
- *RUN,time limit, print limit
coe Data
*EOD

This example shows how Fortran, KWIK and relocatable binary
routines may all be included for Kwiktran loading (and
compilation if necessary). The KWIK and relocatable binary
decks must be preceded by an IDENT statement punched starting

in column 10. If several KWIK or binary decks are entered as g

block only one IDENT statement is required.

Manual Supplement 33 _ | 5/2

(3) *JOB,charge code,ident, time limit
*DFCOPDR,10,,FTNSRC .
*KTN,I1=10,%X,B=62,L
*KTN,L,X,B=62

soe Fortran source routines
and KWIK routines

e s 0

SCOPE
*LOAD
*RUN, time limit, print limit
sos Data
*EOD

In the above example some of the routines to be run are on the
disc as a document called PTNSRC and some accompany the job.

- Both lots are to be compiled and loaded and are to have KWIK
decks produced on logical unit 62.

Manual Supplement 33 A1/1

APPENDIX 1

Al

ARRAY BOUNDS CHECKING

For each source language reference to a subscripted variable
the Fortran compiler generates an assembly instruction of the
form

op addresstca,ir

where op is the operation code, address is the location of the
array, ca is a constant addend and ir is an index register 1—6.
If the subscript in the source statement is a constant, ir is
O

The Kwiktran assembler utilizes the fact that for a legal
reference, i.e. a location inside the array in question, the
sum of the constant addend and the currentcontents of the

index register must be in the range 0 to n—1 (inclusive) where
n is the dimension of the array. 1f the subscript is a constant
the constantaddend must be in the same range.

The above assembly instruction is matched against the following
testse.

(a) op is one of the following; STA, ADD, SUB, MUI, DVI, LDA,
LAC, FAD, FSB, FMU, FDV, ENA, INA.

(b) The previous instruction was not an AUGMENT (this
eliminates double precision and certain subroutine calling
sequences),

(¢c) address appeared in a DIMENSION or COMMON statement and is
of dimension n where n is greater than 0 (arrays in formal
- parameter lists are given dimension 0 in the relevant
subroutine) .

The action next taken depends on the value of ir. If ir = 0 the
subscript 1s a constant and ca is checked to see that 1t lies
between 0 and n—1. If not, a fatal compilation diagnostic is
given. If ir is not equal to 0 the subscript is a variable and
must be checked at execution time.

In subroutines a small percentage of instruction sequences
which refer to formal parameters cannot be altered by the
insertion of instructions to check array bounds. T these
situations therefore no array bounds checking is incorporated.

Manual Supplement 33 A1/2

The following five instructions are inserted ahead of the
instruction in question when bounds checking is incorporated
i.e, when the N option is not specified.

RXT " P,D

INT ca,ir

RGJP,GE iry,n,AD.CHECK
NOP XX

INT —Cca,ir

P is the location counter, D is the D register, AD.CHECK is the
location of a library diagnostic routine and xx is the octal
equivalent of the first two characters of the array name. LT
the register jump is taken the program is terminated with the

diagnostic
>>> ppppp — LOCATION OF ARRAY BOUNDS ERROR
AFTER 11111 — TAST STATEMENT LABEL
IN abcdefgh — (SUB)PROGRAM NAME
nmopqgrst — CALLING (SUB)PROGRAM
xx — ARRAY NAME (1ST 2 CHARACTERS)

nnnnnto — DIMENSION
iiiiiwe - SUBSCRIPT VALUE

Line 4 of the diagnostic is not printed if the error occurred
in the main program. Statement Iabels greater than 32767 will
be ignored.

The information contained in the diagnostic will generally be
adequate for locating the point in the program where the error
is occurring. If more precise information is required a memory
map can be obtained with the R option and the location found

from ppppp.

Manual Supplement 33 A2/1

APPENDIX 2

A2

DIAGNOSTICS
Two forms of assembly/loading diagnostics are given. The first
is concerned with table limits and hopefully will not be seen
by the user. The first form of diagnostic is

name TABLE FULL

The 1imits of the tables which may produce this diagnostic are

name Limit
. LITERATL 512
COMMON 126 (DAD LOADER Block Common Limit)
EXT. 110
ENTRY 150
SYMBOL 1536

The second form which is concerned with source program errors is
PROGRAM ident SYMBOL name message

where ident is the name of the program, subroutine or function,
and name and message point to the error,

name megssage

name of entry point MULTIPLE ENTRY POINT
name of undefined variable IS UNDEFINED

name of common block COMMON LENGTH ERROR
name of external symbol I3 UNDEFINED EXTERNAL

name of array ARRAY REFERENCE ERROR
name of variable IS USED INCORRECTLY
blank TOO MANY BRT CARDS

octal length of subroutine SUBROUTINE TOO LONG
first word of last binary card in BCD BAD BINARY DECK

first word of binary card in BCD BINARY CHECKSUM ERROR
first word of KWIK card in BCD KWIK CHECKSUM ERROR
first word of KWIK card in BCD KWIK SEQUENCE ERROR

In the last three diagnostics ident may be printed as 0 if the
error occurs in the first few cards of the subroutine. KWIK
card numbers can be obtained by converting the rightmost two
characters of the BCD word to their numeric value.

The MEMORY AVATTABLE is always given and is a fatal diagnostic
if negative. The execution time diagnostics associated with
bounds checking is described in Appendix 1.

Manual Supplement 33 _ A3/1 -

APPENDIX 3

A3

A3.1

KWIK AND RELOCATABLE BINARY DECKS
KWIK Decks

For lack of a better name the cards generated by the Kwiktran B
option are called KWIK cards. KWIK cards contain the basic
fixed format assembly language generated by the Fortran
compiler. The primary advantage of KWIK cards over Fortran
source cards is speed, since they can be accepted directly by
the Kwiktran assembler, thus bypassing the major portion of the
normal compilation phase.

When the B option is nominated a KWIK deck is generated for

each Kwiktran source program or subprogram. The KWIK deck begins
with a BCD card containing the word IDENT beginning in column
10. The IDENT card is followed by a series of binary cards and
the KWIK deck 1s terminated by, but does not include, another
IDENT card or a SCOPE card. The last card written on logical
unit nominated by the B option will be a SCOPE card. The logical
unit is then backspaced over the SCOPE card.

Any Kwiktran source program, subroutine or function may be
replaced by its corresponding KWIK deck. Source decks and KWIK
decks may be mixed in any order.

If a KWIK deck appears among a series of source decks the
control card options are interpreted as follows. The L option
is ignored in that an error—free KWIK deck produces no output
on the 1ist logical unit. The F and Q options are ignored since
they are implicit in the structure of the KWIK deck. In fact,
the F and @ options will be those that were nominated when the
KWIK deck was generated. All other options are as described in
section 2. If the B option ig rominated for a KWIK deck an
identical deck will be gznerated on the B logical unite.

If a checksum or sequence error is detected, a fatal diagnostic
is printed along with the subprogram name and the card sequence
number and the Jjob is terminated. The first binary card after
the IDENT card is number 1.

Manual Supplement 33 | , : ‘ : _ -A3/2

A3.1.1

Binary KWIK Card Formats

Wofd 1 contents.

bit 47 1 . o

bits 3946 card checksum folded six times

bits 36—38 5 (binary card 7 and 9 punch)

bits 12—35 first four characters of program name
bits 00—11 card sequence number modulo 2¥*12

‘Words 2 — 20 contents:

Nineteen OUTLIS words. Twe basic fixed format assembly language

generated by Fortran is kept in a Iist called OUTLIS. This list
is, if possible, maintained in the core store. For large
subroutines OUTLIS is written on to logical unit 51 in 100~word
records. Bach item (assembly instruction) in OUTLIS consists of
two or three words, interpreted as follows. ‘

_ Word 1-

L7
slulz| T | PFP|E]|Q clT|lAa | B C
111 3 1 1 18 7 11 7 1
where :
FIELD VAIUE USAGE |
S | 1 If symbol in word 2 is not in IVLIST,
' skip this item -
0 No effect '
U 1 ‘Force upper
0 No effect
T 0—7 - Value in index field
F 1 G is a numeric function code
: 0 Look up G in table
E - 1 - Word two to be preceded by =S or =H
0 No effect
Q 1 Word two isbinary
0 Word two is BCD symbol
T 1 Word three is binary
0 No word three
A Field B is absolute bank (0=7)

Field B is relative bank

O

Word 2.

Word 3:

Manual Supplement 33

13-80

Bank number if A=1
Local bank if A=Q

Set bank to $ if A=0

Octal additive or displacement

Function code — see OUTLIS codes

BCD symbol orbinary constant

A3/3

Binary constant or BCD symbol for EQU op—code (G=M5)

Note that if G=69 (Double Precision Augment) and the S field is
the augment

non—zero, the CM (Complement) bit will be set in
instruction.

ENA
INA
ADD
SUB
MUT
DVI
LDA
LAC
FAD
FSB
FMU
FDV
ROP,XOR
ENT
INT
IIL
STA
AJP,ZR
AJP ,NZ
AJP,PL
AJP NI
STLJ
TJP
BRTJ
EXT
TDENT
ENTRY
BLOCK
COMMON
ORGR
0CT
BSS
EQU

END

OUTLIS CODES (G—FIELD)

Double precision augment

SAU
SAL
RAD
RAO
QJP,PL
SST
SCL
SSU
LQC
STQ
LDQ
ATS
IRS

NOT USED

SIU

SIT

LIU

ENQ

LLS

SLS

RSO

ENO
DPA*
RTJ
ROP,—
RGJIP,EQ
RXT
ROP, +
BANK
ROP , AND
ROP,OR
UBJP

QJP,MI

SCM

Manual Supplement 33 A3/§

A3.2

Relocatable Binary Decks

The ability to use relocatable binary decks has been added to _
Kwiktran to make available routines originally written in o
Compass. If the routines were originally written in Fortran it
is suggested that these should be converted to KWIK as thls
enables array bounds checking to be incorporated.

The relocatable binary decks produced by the Fortran or Compass
P option can be used as input to Kwiktran provided that the
following conditions are met:

(a) A binarj deck must be preceded by a BCD card contéining the
word IDENT in columns 10—14. IDENT cards between binary
subroutines are optional. :

(b) The subprogram length is not greater than approximately
12000,

(¢) There are no complemented references to external symbols. . .

(a) Any 'undefined' external symbols as described in section 3
must appear in and be referenced by BRTJ instructions.

If a relocatgble binary deck satisfies the above conditions it

‘may be placed in a job anywhere that a source deck or KWIK deck

may be used,

Relocatable binary decks produced by Fortran never violate
conditions (c) and (d). Arrays in common do not contribute to
the length of condition (v).

If a relocatable binary deck appears among a series of source =
decks the control card options are interpreted as follow. The L
option is ignored in that an error—free relocatable binary deck
produces no output on the list loglcal unit. The F and Q options
are ignored since they are implicit in the structure of the
deck, In fact, the F and Q options will be those that were
nominated when the deck was generated. All other options are as
degcrived in section 2, however the use of the B option is
inadvisable, :

Manual Supplement 33 _ AL/ 1
E APPENDIX 4
'5”‘ Al

KWIKTRAN LIBRARY

ENTRY PTS. ROUTINE ENTRY PTS. ROUTINE

ABNORMATL TOPACK. DISCDOC. DISCDOC.
ABSTF ABSF DLOG DLOG
ACOSTF ASTINF DIOG10 DLOG10
AD.CHECK AD,CHECK DMAX 1 DMAX1 -
ATMAG CMPLXCVR DMIN1 DMAX1
ATIOCIN. TOPACK. DMOD DMOD
ATLTOC. TOPACK, DSIGN DSIGN
ATOG10 ATOG10 DSIN DSIN

AND MASK32. DSQRT DS QRT
ANDD MASK32. DVCHKF OVERFLF
ASTNF ASINF EFT. EFT.
ATAN2 ATAN2 EIB. 10B.
ATANTF ATANF EID. TOH.
AUTOPLOT - AUTOPLOT ENC. ENC.
BACKFILE BACKSKIP EOFCKE EOFCKF
BCDBUF. TOH. EOR MASK32.
BCDCKA . T0H. EORD MASK32.
BCDERA . TOH, ERASE ERASE
BCDERSET BCDINERR EXFLTF OVERFLF
BFI., BFI. EXIT TOPACK,
BFO., BFI. EXPF EXPF
BSPF BACKSKIP FIOATT FIOATF
BSP. BSP. IDINT IDINT
BUSY. TOPACK, TEQUIV TEQUIV
CABS CABS TNBCDCK BCDINERR
CANG ATAN2 TNBCDCKF BCDINERR
CANGQSQ ATAN2 INTAPE WEXTCHAR
CATAN CATAN INTF INTF
CCos CSIN TOCHKF EOFCKE
CEXP CEXP I0E. TOPACK,
CIOG CIOG TOH. TOH,
CLOSEXIT TOPACK., TOP. TOPACK,
CMAGQSQ CABS TOR. TOPACK,
CMPT.X CMPLXCVR T10S. TOPACK.
CONJG CONJIG TT0J TT0J
COSF SINF ITOX ITOX
COTR COTF KTNLIB KTNLIB
CSIN CSIN TABEL TABEL
CSQRT CSQRT LENGTHF LENGTHF
CUBERTT CUBERTF TOGF TOGF
DABS DABS LUNSET NEXTCHAR
DAT AN DATAN ' MACHTYPE DUMYLINK
DATAN2 DATAN2 MAXOF MAX1F
DATE DATET IME MAX1F MAX1F
DBLE SNGTL MINQF MAX1F
DCOS DSIN MIN1F MAX1F
DCUBRT DCUBRT MODF Q8QMODF
DEC. DEC. ‘NEXT CHAR WEXT CHAR
DENS DENS NOT MASK32,
DEXP DEXP NOTD MASK32,
DIMF DIMF OR MASK32,
DISCDOCS DISCDOCS ORD MASK32),

Manual Supplement 33

OVERFLF
PAPERCH
PLANT
PLOT
PLOTCHOP
PLOTSET
PLTDUMP
POWRF
PROGLINK
PUN.
Q0R06200
Q0Q06300
Q0Q06500
Q1Q00100
Q1Q00200
Q1Q00210
Q1Q00300
Q1Q00310
Q1Q00320
Q1Q00500
Q1Q01100
Q1Q01200
Q1Q01210
Q1Q01300
Q1Q01310
Q1Q01320
Q1Q01500
Q1202100
Q1Q02200
Q1Q02210
Q1Q02300
Q1Q02310
Q1202320
Q1Q02330
Q1202500
Q1Q03100
Q1Q03200
Q1Q03210
Q1Q03300
Q1Q03310
Q1Q03320
Q1203330
Q1Q03500
Q1Q04100
Q1Q04200
Q1Q04210

- Q1Q04300
Q1Q04310

Q104320
Q1Q04330
Q1Q04500
Q1Q05100
Q1Q05200
Q1Q05210
Q1R05300
Q1Q05310
Q1Q05320

OVERFLF
DUMYLINK
DUMYLINK
PLOT
PLOT
PLOT
PLOT
POWRF
DUMYLINK
STH.
Q1QDUBLE
Q1QCPLEX
TYPEBYTE
Q1QREINT
Q1QDUBLE
Q1QDUBLE
Q1 QCPLEX
Q1QCPLEX
Q1QCPLEX
TYPEBYTE
Q1QREINT
Q1QDUBLE
Q1QDUBLE
Q1QCPLEX
Q1QCPLEX
Q1QCPLEX
TYPEBYTE
Q1QREINT
Q1QDUBLE
Q1QDUBLE
Q1QCPLEX
Q1QCPLEX
Q1QCPLEX
Q1QCPIEX
TYPEBYTE
Q1QREINT
Q1QDUBLE
Q1QDUBLE
Q1QCPLEX
Q1QCPLEX
Q1QCPLEX
Q1QCPLEX
TYPEBYTE
Q1QREINT
Q1QDUBLE
Q1QDUBLE
Q1QCPLEX
Q1QCPLEX
Q1QCPLEX
Q1QCPLEX
TYPEBYTE
Q1QREINT
Q1QDUBLE
Q1QDUBLE
Q1QCPLEX
Q1QCPLEX

~ Q1QCPLEX

Q1Q05330
Q1Q05500
Q1Q10010
Q1Q10020
Q1Q10030
Q1Q10100
Q1Q10120
Q1Q10130
Q1Q10200
Q1Q10210
Q1Q10230

© Q1Q10300

Q1Q10310

- Q1Q10320

Q1Q10Lo0
Q1Q10L10
Q1Q10420
Q1Q10430
Q1Q10500
Q2Q07000

- Q2Q07101

Q2Q07110
Q2Q07111
Q2Q07202
Q2Q07212
Q2Q07220
Q2Q07221
Q2Qp7222
Q2Q07303
Q2Q07313
Q2Q07323
Q2Q07330
Q2Q07331
Q2Q07332
Q2Q07333
Q2QDLDA

Q2QLOADA
Q3Q00040
Q3Q00140
Q3Q00240
Q3Q00340
Q3Q00550
Q3Q01040
Q3Q01140
Q3Q01240
Q3Q01340
Q3RQ01550
Q3Q02040
Q3Q02140
Q3902240
Q3Q02340
Q3Q02550
Q3Q03040
Q3Q03140
Q3Q03240
Q3Q03340
Q3Q03550

Q1QCPLEX
TYPEBYTE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
Q1QSTORE
TYPEBYTE
ITOJ
ITOX
XTOI
POWRF
Q2Q07202
DPOWER
DTOI
DPOWER
DPOWER
Q2Q07313
Q2Q07313
Q2Q07323
Q2Q07330
Q2Q07331
Q2Q07331
Q2Q07331
Q2QDIDA
Q2QLOADA
Q1QREINT
Q1QREINT
Q1QDUBLE
Q1QCPLEX
TYPEBYTE
Q1QREINT
Q1QREINT
Q1QDUBLE
Q1QCPLEX
TYPEBYTE
Q1QREINT
Q1QREINT
Q1QDUBLE
Q1QCPLEX
TYPEBYTE
Q1QREINT
Q1QREINT
Q1QDUBLE
Q1QCPLEX

TYPEBYTE

An/2

i
S’

Manual Supplement 33

Q3Q040L0
Q3Q0oL140
Q304240
Q3Q04340
Q3Q04550
Q3Q05040
Q3Q05140
Q3Q05240
Q3Q05340
Q3Q05550
Q3Q10040
Q3Q10050
Q3Q10140
Q3Q10240
Q3Q10340
Q3Q10440
Q3Q10550
Q7QLODLC
QBQABSF

QBQACOSTF

QBQASINF
QBQATANF
QBQCHAIN

"QBQCORE.

Q8QCOSF
Q8QCOTF
QB8QCUBER
QBQDBLE
QB8QDCONS
Q8QDICT,
QBQDIMF
QBQDLDA
Q8QDLODA
QB8QENTRY
QBQERROR
QBQERSET
Q8QEXPF
QBQFLOAT
QBQHIST., -
Q8QIFDIV
QBQIFEQF
QBQIFEXP
Q8QIFIOC
QBQIFOVE
QBQIFSIT

‘QB8QIFUNI

Q8QINPL
Q8QINTF
Q8QITOJ
Q8QITOX
Q8QLDCON
QBQLOADA
Q8QLODA
Q8QLOGT
Q8QMODT
Q8QOUTL
Q8QPAUSE

Q1QREINT
Q1QREINT
Q1QDUBLE
Q1QCPLEX
TYPEBYTE
Q1QREINT
Q1QREINT
Q1QDUBLE
Q1QCPLEX
TYPEBYTE
Q1QSTORE

TYPEBYTE .

Q1QSTORE

" Q1QSTORE

Q1QSTORE
Q1QSTORE
TYPEBYTE
Q7QLODLC
ABSF
ASINF
ASINF
ATANF
TOPACK,
TOPACK,
SINF
COTF
CUBERTF
SNGL
Q8QDIDA
TOPACK,
DIMF
Q8QDLDA
Q8QDILDA
TOPACK,
TOPACK.
TOPACK,
EXPF
FLOATF
TOPACK,
Q8QIFDIV
QB8QIFIOC
Q8QIFDIV
QB8QIFIOC
Q8QIFDIV
QB8QSENLT
Q8QIFUNT
QB8INOUTL
INTF
IT0J
ITOX
QB8QLOADA
Q8QLOADA
Q8QLOADA
LOGF
QB8QMODF
Q8INOUTL
QBQPAUSE

QB8QPOWRF
QB8QRANF
QBQRESTD
QB8QSENLT
QB8QSIGNF
Q8QSINF
Q8QSNGL
Q8QS0s
Q8QSQRTF
QB8QSTOPS
QB8QTANF
QBQTANHF
QBQTRACE
QBQTRICE
QB8QXABSF
Q8QXDIMF

QBQXFIXF

QBQXINTF
QBQXMODF
QBQXSIGN
QBQXTOI

Q9QEVALB

Q9QEVALL -

QNDOUBL,
QNSINGL.,
RANF
RANFGET
RANFSET
RDISC
RDRUM
RDRUMINT
REAL
RELEASE
RETURN.
REW,
SAVE
SCALER
SHIFT
SHIFTD
SIGNF
SINFE
SKIP
SKIPFILE
SLIL.,
SLITE
SLITEF
SLITETF
SLT.
SLOZ‘]“ e
SLO,
SNGL
SQRTF
SSWTCHF
STATUS
STB .
STH,
TAN

POWRF
RANF

. QBQRESID

QBQSENLT
SIGNF

" SINF

SNGL
TIOPACK.
SQRTF
QBQPAUSE
TANFE
TANHF
QBQTRACE
QBQTRACE
ABSF
XDIMF
XFIXF
XFIXF
QBQXMODF
SIGNF
XToIL .
QIQEVAL
QOQEVAL
IOPACK.
IOPACK,
RANF
RANF
RANF
DISCJOCK
DRUMMER
DRUMMER
CMPLXCVR

- UNLOAD

TOPACK,
REW.
SAVE

S CALER
SHIFT
SHIFT
SIGNF
SINF
BACKSKIP
BACKSKIP
SLIOL.,
SLITETF
SLITETF
SLITETF
SLI,
SLIOL,
SLI.
SNGL
SQRTF
SSWTCHF
STATUS
I0B.
STH.
TANF

AL/3

Manual Supplement 33

TANF
TANHF
TEXT
THEND,
TIME
TIMEF

T IMELEFT
TSB.
TSH.
UNITSTF
UNLOAD
UNSAVE
UTILITY
UTILITY.
WDISC
WDRUM
WDRUMINT
XABSF
XDIMF
XFIXF
XINTF
XMAXQF
XMAX1F
XMINOQF
XMIN1F
XMODF
XSIGNF
XTOI
-REPCNT.
.TSERR,

TANF
TANHF
PLOT
IOPACK.
DATETIME
TIMEF
TIMEF
10B.
TSH.
UNITSTF
UNLOAD
SAVE
UTILITY
UTILITY,
DISCJOCK
DRUMMER
DRUMMER
ABSF
XDIMF
XFIXF
XFIXF
MAX1F
MAX1F
MAX1F
MAX1F
QBQXMODF
SIGNF
XToI
IOH.
IOH.

Ab/y

»

#

