

60449900

@ CONTROL DATA
CORPORATION

UPDATE
VERSION 1
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS 2
NOS/BE 1
SCOPE 2

60449900 F

Directive

*ABBREV
*ADDF ILE

*BEF ORE

*CALL
*CHANGE
*COMDECK
*COMPILE
*COMPILE
*COPY
*COPY
*COPY
*CWEOR

*DECK
*DECLARE
*DEF INE
*DELETE
*DELETE
*DO
*DONT

*END
*ENDIF
*ENDTE XT

*IDENT
*IF

*IF
*INSERT

*LIMIT
*LIST

*MOVE

*NOABBREV
*NOLIST

*PULIMOD
*PURDECK
*PURDECK
*PURGE
*PURGE
*PURGE

*READ
*RESTORE
*RESTORE
*REWIND

*SELPURGE
*SELYANK
*SEQUENCE
*SEQUENCE
*SKIP

*TEXT

*WEOR
*WIDTH

*YANK
*YANK
*YANKDECK

*y

15

UPDATE DIRECTIVES INDEX

Parameters

1fn,name
line

deck

oldid ,newid,...,0ldid ,newid
deck,NOPROP

deckl.deck2
deckl,deck2,...,deckn
deck,line

deck,linel,line2
deck,linel,line2,1fn

level

deck

deck

namel,name2, ...,namen
linel,line2

line
identl,ident2,...,identn
identl,ident2,...,identn

idname ,B=num,K=ident,U=ident
type ,name ,num

—type ,name ,num

line

n

deckl,deck?2

ident1,ident2,...,identn
deckl,deck?2,...,deckn
deckl.deck2
identl,ident2,...,identn
ident l.ident2

ident,*

1fn

line
linel,line2
1fn

deck .ident 1,deck2.ident2,...,deckn.identn
deckl.identl,deck2.ident2,...,deckn.identn
deckl,deck2,...,deckn

deckl.deck2

1fn,n

level
linelen,idlen

ident l,ident2,...,identn
identl.ident2
deckl,deck2,...,deckn

comments

Abbreviation

none
*AF

*B

*CA
*CH
*CD
*C

*C

*CY
*CY
*CY
*CW

*DK
*DC
*DF
*D
*D
none
*DT

none
*ET
*ET

*1D
none
none
a1k

*LT
*L

*M

*NA
*NL

*PM
*PD
*PD
*P
*P
*P

*RD
*R
*R
*RW

*SP
*SY
*S
*S
*SK

*W
*WI

*Y
*Y
*YD

none

—

(el) AT
=

wwtﬂwhluwwuu
—OOON—~WU O~

|

60449900

@ CONTROL DATA
CORPORATION

STATION <Tirsy
ASPERDALE, Vic, 3

UPDATE

VERSION 1
N REFERENCE MANUAL
)

CDC® OPERATING SYSTEMS:
NOS 1
NOS 2 ,
NOS/BE 1
SCOPE 2

REVISION RECORD

Revision

A (12/15/75)

B (03/31/78)

C (10/31/80)

D (11/23/81)

E (03/25/82)

F (09/18/84)

Description

Original printing. This manual is a successor to publication number 60342500 for users
of NOS 1.0, NOS/BE 1.0, and SCOPE 2.1 operating systems.

This revision reflects Version 1.3 of the Update utility at PSR level 472, Update has
been modified to allow up to seven secondary old program libraries to be specified. This
revision obsoletes all previous editions.

This revision reflects Version 1.4 of the Update utility at PSR level 528, which adds the
capability to maintain program libraries in ASCII (8-bit) code, and to use text lines
with 256 characters or less.

This revision reflects Versiom 1.4 of the Update utility at PSR level 552. This revision
supersedes all previous editions.

This revision reflects Version 1.4 of the Update utility at PSR level 564, It supports
NOS Version 2.0 and includes miscellaneous technical corrections.

This revision documents Version 1.4 of the Update utility at PSR level 601, It includes
the addition of the END directive and miscellaneous corrections and modifications.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

©COPYRIGHT CONTROL DATA CORPORATION P. 0. Box 3492

1975, 1978, 1980,
All Rights Reserved

1981, 1982, 1984 SUNNYVALE, CALIFORNIA 94088-3492

Printed in the United States of America or use Comment Sheet in the back of this manual

ii

60449900 F

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

Front Cover

Inside Frout Cover F

Title Page -

ii F

iii/iv F

v F

vi E

vii F

o viii F
?E ix]
A 1-1 F
1-2 F

1-3 E

2-1 D

2-2 F

2-3 D

2-4 F

3-1 thru 3-3 D

3-4 F

3~5 thru 3~7 E

3-8 F

3-9 D
Yy b ;
e 3-11 E
3-12 thru 3~14 D

3-15 F

3-16 F

4~1 D

4-2 D

4~3 thru 4-5 F

4-6 D

4-7 D

4-8 F

5-1 thru 5-7 D

A-1 thru A-5 D
} A-6 F
i A-7 thru A-12 D
B-1 thru B-4 E

B-5 F

B-6 F

B-7 D

Cc-1 D

Cc-2 D

D-1 F

D-2 thru D~4 D

D-5 [

D-6 thru D-8 D

D-9 F

D-10 D

Index-1 F

Index-2 D

Comment Sheet/Mailer F

Inside Back Cover F

Back Cover

Mﬁ 60449900 F iii/iv

PREFACE

This manual describes the Update utility for main-
taining and updating decks in compressed symbolic

format on mass storage. As described in

this

publication, Update 1.4 operates under the control

of the following operating systems:

® NOS 1 and NOS 2 for the CONTROL DATA® CYBER 180
Computer Systems; CYBER 170 Computer Systems;

CYBER 70 Computer System models 71, 72,
74; and 6000 Computer Systems.

73, and

e NOS/BE 1 for the CDC® CYBER 180 Computer Sys-
tems; CYBER 170 Computer Systems; CYBER 70

Computer System models 71, 72, 73, and 74;

6000 Computer Systems.

and

o SCOPE 2 for the CDC CYBER 170 Computer System
model 176; CYBER 70 Computer System model 76;

and 7600 Computer Systems.

The user is assumed to be familiar with the oper-

ating system and computer system in use.

The following manuals are of primary interest:

Publication

NOS Version 1 Reference Manual,
Volume 1 of 2

NOS Version 2 Reference Set, Volume 3
System Commands

NOS/BE Version 1 Reference Manual

SCOPE Version 2 Reference Manual

The NOS 1, NOS 2, and NOS/BE Manual Abstracts are
pocket-sized manuals containing brief descriptions
of the contents and intended audience of NOS and
NOS/BE and all the product set manuals of these two
operating systems. The manual abstracts can be
useful in determining which manuals are of greatest
interest to a particular user.

The Software Publications Release History serves as
a guide in determining which revision level of
software documentation corresponds to the Program-
ming System Report (PSR) level of installed site
software.

The users of Update can find additional pertinent
information in the Control Data Corporation manuals
listed below. The manuals are listed alphabetically
within groupings that indicate relative importance
to readers of this manual. The applicable oper-—
ating systems are also indicated.

Publication

Number

NOS 1 NOS 2 NOS/BE 1 SCOPE 2

60435400

60459680
60493800

60342600

The following manuals are of secondary interest:

Publication

NOS Version 1 Diagnostic Index
NOS Version 2 Diagnostic Index
NOS/BE Version ! Diagnostic Index
NOS Version 1 Manual Abstracts
NOS Version 2 Manual Abstracts
NOS/BE Version 1 Manual Abstracts

Software Publications Release History

60449900 F

Publication

Number

NOS 1 NOS 2 NOS/BE 1 SCOPE 2

60455720
60459390
60456490
84000420
60485500
84000470

60481000

X

vi

CDC manuals can be ordered from Control Data Corporation,

Literature and Distribution Services, 308 North Dale
St. Paul, Minnesota 55103.

This product 1is intended for wuse only as
described in this document. Control Data can-
not be responsible for the proper functioning
of undescribed features or parameters.

Street,

60449900 E

NOTATIONS

1. INTRODUCTION

File Names

Directives

Creation Run

Correction Run

Copy Run

Deck List and Directory Order
Update Mode

2. UPDATE FILES

Input File

Program Library Files
New Program Library
0ld Program Library

Compile File

Listable Output File

Source File

Merge File

Pullmod File

3. UPDATE DIRECTIVES

Directive Format

Line Identifiers

Deck Identifying Directives
DECK Directive
COMDECK Directive

Correction Directives
ADDFILE Directive
BEFORE Directive
CHANGE Directive
COPY Directive
DELETE Directive
IDENT Directive
INSERT Directive
MOVE Directive
PURDECK Directive
PURGE Directive
RESTORE Directive
SELPURGE Directive
SELYANK Directive
SEQUENCE Directive
YANK Directive
YANKDECK Directive

Compile File Directives
CALL Directive
COMPILE Directive
CWEOR Directive
DO Directive
DONT Directive
ENDIF Directive
IF Directive
WEOR Directive
WIDTH Directive

File Manipulation Directives
READ Directive
REWIND Directive
SKIP Directive

Input Stream Control Directives

60449900 F

CONTENTS

ix

RN NN N
1
SEDDWWWON

w
| i
i

|1 AL A TR T T |
[« e NN RN W R, B ST

]

P—LP‘\D\D\DOOOJOO\J\IO\

~10

ABBREV Directive
ENDTEXT Directive
LIST Directive
NOABBREV Directive
NOLIST Directive
TEXT Directive
Special Directives
DECLARE Directive
DEFINE Directive
END Directive
LIMIT Directive
PULIMOD Directive
/ Comment Directive

4, UPDATE CONTROL STATEMENT

Parameters

Sequential-to—-Random Copy
Random-to—-Sequential Copy
Compile File Name

Data Width on Compile File

Edit 0ld Program Library

Full Update Mode

Pullmod File Name

Character Set Change

Input Stream File Name

Compile File Sequence

Listable Output Options

Merge Program Libraries

New Program Library File Name
Listable Output File Name

0ld Program Library File Name
Quick Update Mode

Rewind Files

Source File Name

Omit Common Decks From Source File
Debug Help

Sequential New Program Library Format
Compressed Compile File

Line Image Width on Compile File
Master Control Character

Comment Control Character

UPDATE Control Statement Examples

S~ HONECHMORONORZEr R AN OMED ON P>

5. EXAMPLES OF UFPDATE RUNS

Library File Creation

Alternative Input Files

Inserting, Deleting, and Copying
Purging and Yanking

Selective Yanking

Selective Writing to Compile File
Addition of Decks

Pullmod Option

Program Library as a Permanent File
Sample FORTRAN Program

APPENDIXES

A Character Sets

B Diagnostics

C Glossary

D File Format and Structure

3-14
3-14
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-15 f
3-15
3-15
3-16

T
0

[U L
bt

1

KRR S S R I
R W W W W PO e

i

i

| L]

i

1
NSO it i

» £~£~$~f~b‘b FEN

A
L

U

{

i

i
Lo e S S I

munui g

vii

INDEX

FIGURES

General Update Directive Format
Full Form of Line Identification

Expansion of Short Forms of Line
Identification

W ww
|
W o=

1
= 0 00 SO o

Example of Deck Structure
DECK Directive Format
COMDECK Directive Format
ADDFILE Directive Format
BEFORE Directive Format
CHANGE Directive Format

[
<

I
e
BN e

COPY Directive Example
DELETE Directive Format
3~15 IDENT Directive Format
3-16 INSERT Directive Format
3-17 MOVE Directive Format
3-18 PURDECK Directive Format
3-19 PURGE Directive Format
3-20 RESTORE Directive Format
3-21 SELPURGE Directive Format
3-22 SELYANK Directive Format
3-23 SEQUENCE Directive Format
3-24 YANK Directive Format
3-25 YANKDECK Directive Format
3-26 CALL Directive Format
3-27 COMPILE Directive Format
3-28 CWEOR Directive Format
3-29 DO Directive Format

3-30 DONT Directive Format
3-31 ENDIF Directive Format
3-32 IF Directive Format

3~-33 WEOR Directive Format
3-34 WIDTH Directive Format

uwuwwaiouwwww

3-35 Fields of Line Image and Identification

3~36 READ Directive Format
3-37 REWIND Directive Format
3-38 SKIP Directive Format
3-39 ABBREV Directive Format
3-40 ENDTEXT Directive Format
3-41 LIST Directive Format
3-42 NOABBREV Directive Format

viii

Examples of Line Identifier Expansion

COPY Directive Format - Copy to Deck
COPY Directive Format - Copy to File

W
1§
E R UV

Wio W W Wwww
R
ngowmoooow\tw\lc\c\c\c\mmwbb

L{wawwwwuwwwwwuu
e !
e O

w
I

3-11
3-12
3-12
3-12
3-12
3-12
3-13
3-13
3-13
3-13
3-13
3-14
3-14
3-14
3-14
3-14

L1
-~

[
Lol

L'ﬂUlU!U\UILiﬂUIUlU\U!Ul
b e =0 0 SO Y
[F- N

5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28

NOLIST Directive Format

TEXT Directive Fommat

DECLARE Directive Format

DEFINE Directive Format

END Directive Format

LIMIT Directive Format

PULLMOD Directive Format

Comment Directive Format

UPDATE Control Statement Format

Update Creation Run

Creation of Library From Alternate
Input File

Creation of Library With Common Decks

Input File Not INPUT

Program Library Contents

Modify 0l1d Program Library

Compile File Contents

Correction Run

Use of YANK

Return to Previous Level

Use of PURDECK

Use of DO and DONT

Sequence of Deck

Use of IF and ENDIF

Nested IF Directives

ADDFILE Input on File INPUT

ADDFILE Input on File FNAME

ADDFILE Input on Secondary Input Files

Correction Run for PULIMOD Example

File Contents After Correction Run

Pull Modifications

Recreated Correction Run

Permanent File Under NOS/BE or SCOPE 2

Permanent File Under NOS

FORTRAN Program Library - 1

Correction of SUBROUTINE Statement

FORTRAN Program Library - 2

Add Deck to FORTRAN Program Library

TABLES

J-\D)ITQNND—‘
P LD B

Update Mode

File Summary

File Contents and Update Mode

New Program Library Format

Summary of Update Directives

Summary of UPDATE Control Statement
Parameters

60449900 F

3-14
3-14
3~15
3-15
3-15
3-15
3-15
3-16

o
[
ot ot

| T L T
W W N NN -

AT R RV R L FUR)

[R I
NN OO

LﬂuxU‘U\L'nLnU\umU!U‘l

NOTATIONS

Throughout this manual, the following conventions
are used to present Update directives:

UPPERCASE

lowercase

60449900 D

Uppercase letters indicate words,
acronyms, or mnemonics either re-
quired by Update or produced as
output by Update. All words printed
entirely in uppercase letters have a
preassigned meaning to Update.
These words 1nclude command verbs
and keywords.

Lowercase words identify variables
for which values are supplied by the

Update user or by Update as output, -
These words generally indicate the
nature of the information they rep—
resent (numerical value, file or job
name, and so forth).

Ellipsis indicate that omitted
entities repeat the form and func-
tion of the last entity given. An
ellipsis immediately following a
command element indicates it can be
repeated at your optiom.

The delta symbol represents a blank
used as a separator.

ix @

INTRODUCTION 1

Update is a wutility for maintaining and manip-
ulating a mass storage file containing images of
coded punched cards or text lines. Once these
images have been made a part of an Update program
library, physical punched cards or lines can be
eliminated. Update can maintain 6-bit (display
code) line images and 8~bit (ASCIIL) line images om
the same program library. Line images can be as
long as 256 characters. The length of line images
written to the compile file can be controlled by an
Update directive. The entire line appears in the
output listing.

A file of line images to be manipulated by Update
must be in a special format known as a program
library. Three types of Update runs generate or
manipulate a program library:

@ A creation run generates a program library from
the input stream text.

] A correction run manipulates the contents of an
existing program library.

@ A copy run changes the format of a program
library from random to sequential or from
sequential to random,

A separate new program library can be created with
a correction runm; the changes made during the
correction run are permanently recorded in the new
program library. Changes made during a correction
run never permanently alter the existing program
library. The changes become permanent only through
the creation of a new program library.

As each line image is written to the program
library, Update assigns it a unique identifier.

Groups of line images within the program library
are known as decks. Each program library must have
at least one deck; the maximum number of decks is
262143, Deck grouping is significant in terms of
extracting line images from the program library in
a format suitable for use by a compiler, assembler,
or print routine. While an individual line can be
referenced for purposes such as deletion of that
line or insertion after that line, the smallest
unit that can be extracted from the program library
is the deck. ©Program libraries can be maintained
either in the display code or ASCII character set.
All ASCII input or output codes are 8-bit charac-
ters, right-justified in a 12-bit byte (ASCII 8/12).

Typically, use of Update involves maintenance of a
group of compiler or assembly language routines,
For convenience, the programmer often specifies
each routine or group of related routines as an
individual deck. One routine can then be changed
or extracted without affecting other routines in
the program library. Because each line image in a
deck has its own identifier (a deck name) and an
Update~supplied sequence number, the line image can
be referenced individually in order to correct or
change a routine. Then, the deck containing the
modified routine can be extracted from the program

60449900 F

library and used as if it had been entered into the
system as a punched deck.

A deck can be composed of punched cards or images
of punched cards. Update makes no assumptions about
contents. While programs are the usual contents
maintained by Update, this utility is equally
applicable to a set of data cards or any other text.

The programmer controls Update operations through
the following two mechanisms:

° The UPDATE control statement parameters specify
the general operations to be performed. The
file parameters control the files to be manip-
ulated and influence the type of operations
performed.

e The input stream directives specify the detailed
operations to be performed and specify the line
images to be made a part of the program library.
The instructions for Update operation are called
directives; the line images for the program
library are called text. The input stream can
be either part of the job deck containing the
UPDATE control statement or a separate file.

FILE NAMES

Files wused or generated by Update have generic
names that are related to their default logical
file names. The following names are used in the
remainder of this manual in describing Update
operations:

° Input file — the user—supplied file or part of
the job deck that contains the input stream of
Update directives and text.

o Output file -~ the listing file generated by
Update that contains the status information
produced during Update execution. It is in a
format suitable for printing.

e Program library - the file generated by an
Update creation run that contains the decks of
line images. When the file is created, it is
known as the new program library. When the
file is corrected, it is known as the old
program library. Line images in the program
library are in a format that can be manipulated
by Update, but the format is meaningless to
most other formats and utilities.

] Compile file =- the file generated by Update
that contains line images restored to a format
that is acceptable to a compiler or assembler.
Decks written to the compile file during any
given run are controlled by the Update mode
selected, by control statement parameters, and
by directives in the input stream.

° Source file ~ the file generated by Update that

contains line images of an input stream that
allows regeneration of the program library.

-1 §

¢ Merge file - the file that contains a program
library that Update merges with the old program
library to create a new program library.

° Pullmod file - the file that contains
directives and text of recreated correction
sets.

Section 2 contains a detailed discussion of the
files used or generated by Update.

DIRECTIVES

The directives for Update are interspersed with
text in the input stream. They are distinguished
by the presence of a control character contiguous
with a directive keyword. More than 40 directives
exist. The directives can be grouped according to
the following operations:

e Identify decks.

° Control compile file contents.

° Manipulate primary or secondary input streams.
° Control overall handling of input files.

e Modify program library contents.

Section 3 contains a detailed discussion of Update
directives.

CREATION RUN

A creation run constructs a program library. It is
the original transfer of punched cards or line
images into Update format. The input file of a
creation run can consist of ASCII 8/12 or display
code characters. ASCII characters must be
right-justified in 12-bit bytes. The new program
library is created in ASCII, if the input file uses
ASCII and if the N or N8 parameter is specified on
the UPDATE control statement.

A creation run exists when the first line read from
the input stream is a DECK or COMDECK directive. A
creation run also exists when one or more of the
following ten directives precedes the first DECK or
COMDECK directive:

ABBREV NOABBREV REWIND
DECLARE NOLIST SKIP
LIMIT READ /(comment)
LIST

The presence of any other directive before the
first DECK or COMDECK directive causes Update to
consider the run to be a correction run.

In addition to the preceding directives, the
following are the only Update directives that can
be used during a creation run:

CALL ENDTEXT TEXT WIDTH
CWEOR ENDIF IF WEOR

Each DECK or COMDECK directive defines a deck to be
inserted into the program library that is being
created. All text and directives following a DECK
or COMDECK directive, until the next DECK or

1-2

COMDECK directive, are considered to be part of the
deck. Each line image receives the deck name and a
unique sequence number so that the images can be
referenced individually. The DECK or COMDECK
directive defining the deck itself is assigned the
sequence number one.

Update decks can be one of two types: a regular
deck declared with a DECK directive, or a common
deck declared with a COMDECK directive. DECK and
COMDECK differ in that a common deck can be called
by name so that it is inserted into the text of
another deck when the compile file 1is being
generated. One copy of the common deck exists on
storage, but multiple copies can be part of a
compile file.

When the library is created, Update generates a
deck named YANK$SS as the first deck on the
library. The YANK$$S deck contains all the YANK,
SELYANK, YANKDECK and DEFINE directives that are
encountered during Update runs. (The YANKSSS$ deck
is described further in appendix D, File Format and
Structure.) Update also generates a deck list and
directory during a creation run. The deck 1list
contains the names of all decks in the library and
the location of the first word for each deck
(random library) or the relative order of the decks
(sequential library). The directory contains one
entry for each DECK, COMDECK, and IDENT directive
that is used for the library.

CORRECTION RUN

A correction run, which is the most common use of
Update, introduces changes 1into the existing
program library. These changes exist only for the
duration of the run unless a new program library is
generated. Update recognizes a correction run when
it encounters a directive other than one of the ten
creation run directives prior to encountering DECK
or COMDECK.

A correction run consists of a read-input-stream
phase and a correction phase. During the first
phase, Update reads directives and text, adds any
new decks, and constructs a table of requested
correction operations. During the second phase,
Update performs the requested modifications on a
deck—by~deck basis.

The order in which a correction run is processed is
not always the same as specified. During a
correction run using a RESTORE directive and then a
DELETE directive on the same line image or deck,
the DELETE directive is processed first. If the
PURDECK directive is used, it is also processed
first, assuming that one UPDATE directive is used.

The input file of a correction run can be in ASCII
8/12 or display code characters. Update uses ASCII
for the program library, if the character set of
the old program library uses ASCII and the N or N8
parameter is on the UPDATE control statement.,

The corrections to the library (the newly inserted
lines, replaced lines, and deleted lines) make up
the correction sets. The IDENT directive assigns a
unique identifier to each line image inserted by
the correction directives. Each inserted line
image is assigned a sequence number beginning with
one for each IDENT name. All line images having
the same correction set identifier comprise a
correction set,

60449900 F

3

)

Update permits a user to remove {(yank) the effects
of a correction set or deck and later restore the
correction set or deck. This feature is convenient
for testing new code. Requests for yanking are
maintained in the YANK$$S$ deck. Before obeying a
correction, Update checks the correction identifier
against the YANKS$$$ deck to see if the correction
has already been yanked. If the correction has
been yanked, an informative message is issued and
processing continues. This effect on the YANKSSS
deck can be selectively controlled through DO and
DONT directives within the decks.

The image of a line, even though deleted through
DELETE or yanking, is maintained permanently on the
program library with its curreant status (active or
inactive) and a chronological history of
modifications to its status. The images contain
information known as correction history bytes. The
history bytes that are generated by Update contain
the history and status of the line and enable
Update to reverse status. Deletion of a line, for
example, is accomplished by the addition of a
correction history byte to the line image rather
than a physical deletion of the image.
Consequently, the line can be reactivated at some
later time.

Update also allows a complete and irreversible
purging of correction sets and decks. When a
correction set or deck is purged, it is physically
removed from the library.

COPY RUN

A copy run changes the old program library format
from sequential to random or from random to
sequential. Update recognizes a copy run when
either the A or B parameter is specified on the
UPDATE control statement. Since Update does not
read the dinput file on a copy run, no other
operations are performed. The control statements
COPY, COPYBF, COPYCF, COPYBR, or COPYCR should not
be used on random access files since the operating
system might not recognize that the copied file is
a random access file.

DECK LIST AND DIRECTORY
ORDER

Update maintains a deck list and directory for its
internal use. The deck list and directory are only
significant to the wuser when ranges of decks or
correction sets are specified on Update
directives. The output file (O parameter) lists
the order of the deck names and correction set
identifiers. The deck 1list and directory are
always maintained in display code.

The deck list contains a list of all decks in the
program library. The original entries of the deck
list correspond to the order of the decks when
written during the creation run. Subsequent
entries are added to the end of the list as they
are introduced in the program library. Therefore,
deck list order might not reflect actual deck order
in the program library, since the user determines
deck location within the program library through
directives.

60449900 E

The location of an entry in the deck 1list is
significant in terms of parameters for PURDECK,
SEQUENCE, and COMPILE directives in which a range
of decks can be referenced. The order of names in
a range reference must be the same as the order in
the deck 1list. The decks named and all the decks
between are then processed in accordance with the
directive. An error exists if they are in reverse
order.

Similarly, as each deck and correction set is
introduced into the program library, Update creates
an entry in an internal directory in chronological
sequence, The location of an entry in the
directory is significant in terms of parameters for
PURGE and YANK directives in which a range of
correction sets can be referenced. The order of
reference must be the same as the order of the
directory. The identified correction sets and all
the sets between are processed in accordance with
the directive. An error exists when a correction
set range is not referenced in the order the sets
were introduced into the library.

UPDATE MODE

The content of any compile file, source file, or
new program library produced during a correction
run is affected by the Update mode. (Table 2~2 in
section 2 summarizes the effect of mode upon file
content.,) The mode of an Update run is determined
by a combination of the omission or specification
of the F and Q parameters on the Update control
statement as summarized in table 1-1.

TABLE 1-1. UPDATE MODE

Parameter

Specified tode

¥ Full mode in which all decks
on the old program library are
processed.

Q Quick mode in which only decks
specified on COMPILE directives
and decks added through ADDFILE
directives are processed.

F and Q Quick mode.

F and Q Normal selective mode in which

omitted the only decks processed are
those modified or those specified
on COMPILE directives.

The mode chosen depends on how extensively the user
wishes to modify the program library and its size.
If the library contains many decks and the user
wishes to modify only a few decks, quick mode
should be used. If there are many decks and the
user wants all decks to be processed, full mode
should be used. Normal selective mode should be

used when only those decks modified or specified
are wanted in the compile file.

UPDATE FILES 2

During its execution, Update manipulates as many as Whether or not a file 1is optional, used, or not
eight files that can be referenced by the wuser. applicable on an Update run depends on the type of
The files involved with any given run depend on the run, as follows:
following:
° The parameters selected by the UPDATE control ® Creation run - the user must supply the input
statement. file. Update generates the new program
library, compile file, and output file by
© Whether the run is a creation rum, correction default. The generation of a source file is
run, Or COpy run. optional. No other files are applicable on a

creation run.
The files that Update generates or uses are
described in this section. Each of these files has

a default name, but other names can be specified ® Correction run - the user must supply the input

through the appropriate parameters on the UPDATE file, the old program library, and the merge

control statement. file (if a merge is to take place). Update

- generates, by default, the output and compile

4% File characteristics are summarized in table 2-1. files. The creation of a new program library,

p The ASCII chracter set codes used in a file are source file, and pullmod file is optional on a
8-bit characters, right-justified, in 12-bit bytes. correction run.

TABLE 2-1. FILE SUMMARY

File Default Contents Mode Default Position
Name

Input INPUT The input stream. Binary Remains at the end
} of the record (end-
E of-section for

SCOPE 2) terminating
Update directives.
If Update aborts,
location of input
file is unpredict-
able.

New program library NEWPL Updated library. Binary Rewound before and
after run.

01d program library OLDPL Library to be updated. Binary Rewound before and
after run.

Secondary old None Library from which common decks Binary Rewinding not
program library can be called. necessary because
file must be
random.

Compile COMPILE Line images for assembly or Binary Rewound before and
compilation. after run.

Output OUTPUT Information for the programmer. Binary Remains in current
position. File is
not rewound.

Source SOURCE Line images for regeneration of Binary Rewound before and
a new program library. after run.

Merge MERGE Second library to be merged Binary Rewound before and
into new program library. after run.

Pullmod Source Re—created correction sets. Binary Rewound before and
file after run.

60449900 D 2-1

Copy run ~ the user must supply the old program
library. Update generates, by default, the new
program library and the output 1listing file.
No other files are applicable on a copy run
and, if specified, are ignored.

The contents of any compile file, source file, or
new program library produced during a
affected by the Update mode and the file format of
the old program 1library.
files are summarized in table 2-2.

run are

The contents of these

INPUT FILE

The input file contains the input stream; it must
contain coded lines or their equivalent.
stream consists of directives
processing and text to be added to the program
library. The
stream are determined by the type of Update run.
The input data can be equal to or less than 256
characters.

The input
that direct Update
allowed in the

directives input

Update initially reads the input stream from the
primary input file specified by the I parameter of
the UPDATE control statement; default file name is
INPUT.
when it encounters a 7/8/9 card or its equivalent,
or end~of-information (EOI).

Update stops reading directives and text

If Update encounters a READ or ADDFILE directive in
the input stream, it stops reading from the primary
input file and

specified on the

starts
directive.

reading from the file
Update reads one

system-logical record (one section for SCOPE 2)
from the secondary input file, then resumes reading
from the primary input file.

The input file can only consist of ASCII 8/12 or
display code characters during a creation or
correction run. No attempt to input ASCII 6/12
data (on NOS) should be made. The ASCII 6/12 data
must first be converted to ASCII 8/12 data using
the NOS FCOPY control statement. Update uses ASCIT
8/12 for the program library if the character set
of the old program library uses ASCII 8/12 and if
the N8 parameter 1is on the UPDATE control
statement. The input file character set is
determined from the first line of the input file.
If other than ASCII 8/12 character set data is
entered, the dinvalid code is translated into a
blank. See appendix A for the character set tables.

PROGRAM LIBRARY FILES

A program library is created during an Update run
and can be manipulated in later runs. The library

consists of a file of line images and internal
information in a special format that can be
processed only by Update. The 1line images are
grouped into decks. Each line image is represented
in a compressed format with multiple space
characters removed that adds a line identifier.
The format also includes Thistory and status

correction history
maintained in

information that is known as
bytes. Program libraries can be
display code or ASCII code characters.

TABLE 2-2. FILE CONTENTS AND UPDATE MODE
File Normal Selective Mode Full Mode Quick Mode Contents Quick Mode Contents
Contents Contents (Sequential OLDPL) (Random OLDPL)
New Regular decks and Regular decks and All decks specified Decks specified on
Program common decks after common decks after on COMPILE directives, COMPILE directives
Library corrections are made. corrections are made. any common decks they and any common decks
call, and any common they call.
decks encountered
prior to all decks of
COMPILE.
Compile Decks corrected or Active decks on old Decks on COMPILE Decks on COMPILE
File on COMPILE direc- program library. directives and decks directives and decks
tives and decks added via ADDFILE added via ADDFILE
calling a corrected plus called common plus called common
common deck (unless decks. decks.
the calling deck
precedes the common
deck or NOPROP is
specified on
COMDECK) .
Source Active lines and Active lines and Active lines from Active lines from
File decks required to decks required to decks specified on decks specified
re—create the re-create the COMPILE directives, on COMPILE directives
the library. library. any common decks and any common decks
they call, and any they call. A common
common decks encount- deck called by a
ered prior to all deleted *CALL
decks on COMPILE. directive.

60449900

The program library also contains a deck list and a
directory. The deck list contains the names of all
decks in the library. In addition to deck names,
the directory also contains the names of all
correction sets. Unless changed by the E parameter
of the UPDATE control statement, the names in both
the deck list and the directory exist in the order
they were introduced.

Update can create and maintain program library
files in two distinct formats: random and
sequential. (These formats are described in detail
in appendix D.) A random program library can be
processed substantially faster than a sequential
program library; however it can exist only on disk
and not on tape.

NEW PROGRAM LIBRARY

A mnew program library is initially generated on a
creation run. It contains directives and text in
an updatable format. File content is determined by
the file format of the old program library and
Update mode as shown in table 2-2, The new program
library name is specified by the N parameter of the
UPDATE control statement; the default file name is
NEWPL. The new program library character set is
the same as the character set used in the input
file during the creation run.

For subsequent correction runs, the previously
generated new program library is identified as the
old program library. A new program library that
incorporates the changes made during the correction
run is generated if requested. 1If the old program
library is in display code, the correction run
character set can be ASCII 8/12 or display code.

A mnew program library can be in random or
sequential format. In the absence of the W
parameter on the UPDATE control statement, the
format is determined by file residence and record
type as shown in table 2-3.

TABLE 2-3. NEW PROGRAM LIBRARY FORMAT

Format NOS and NOS/BE SCOPE 2
Random File is on mass File is on mass
storage and W storage, record
is not type is W un-
selected. blocked, and W
is not
selected.
Sequential File is on mag- File is staged
netic tape or W or online
is selected. tape; or is on
mass storage as
record type S
or record type
W blocked; or W
is selected, or
R specifies no
rewind.
60449900 D

A new program library can be written or appended to
an existing permanent file according to the
permission rules of NOS, NOS/BE, or SCOPE 2,

OLD PROGRAM LIBRARY

The old program library is the file that was
generated as a new program library in a previous
run. It contains a record of changes made since
the program 1library was created. The old program
library name is specified by the P parameter of the
UPDATE control statement; the default file name is
OLDPL.

An o0ld program library is required for a correction
run since it is the program library to be updated.
On a copy run, the old program library is not
modified, but is copied to a sequential or random
new program library. If an old program library is
specified on a creation run, it is ignored.

In addition to the old program 1library to be
updated, up to seven additional (secondary) old
program libraries «can be specified by the P
parameter of the UPDATE control statement. Decks
on the old program library can call common decks
from the old program library or from any of the
other secondary program libraries. No Update
directive other than CALL can be used to reference
common decks on secondary old program libraries.
Common decks on secondary old program libraries can
call common decks that reside on any of the old
program libraries. Program libraries are searched
in the order specified to find the called common
decks. The called common decks that reside on the
secondary old program libraries are not added to a
new program library.

The secondary old program libraries must be randon,
have a wunique name, and have the same master
control character as the old program library. If
these conditions are not met, a diagnostic message
is issued.

When creating a new program library on a creation
run that contains calls to common decks that reside
on secondary old program libraries, C=0 mnust be
specified on the UPDATE control statement.

COMPILE FILE

The compile file contains copies of decks in the
program library restored to a format that can be
processed by a compiler or assembler. The decks
written to the file are determined by Update mode
and the file format of the old program library as
shown in table 2-2. Through the WIDTH directive,
the user can specify whether the text on the file
is to have Update line identifiers on each line of
text.

Compile file name is specified by the C or K
parameter of the UPDATE control statement; default
file name is COMPILE. If the K parameter is
specified, then decks are written to the compile
file in the order they appear on COMPILE
directives. (Any decks not specified on COMPILE
directives follow those specified.) If the C
parameter is specified, then decks are written on
the compile file in the order they appear in the
deck list.

The user has control over the decks written to the
compile file through the compile file directives.
Common decks can be called conditionally or
unconditionally according to compile file
directives embedded in the program library decks.
Additional control of compile file format is
afforded the user through directives that cause a
system-logical record (end-of-section for SCOPE 2)
of the specified level to be written at the end of
decks. The compile file directives can be in the
original decks or can be inserted into the program
library decks during correction rums. These
directives are interpreted when the compile file is
written; the directives themselves are not written
on the compile file.

LISTABLE OUTPUT FILE

The 1listable output file 1is the print file
containing information for use by the programmer.
Content of the file 1is controlled by the L
parameter of the UPDATE control statement with
options that can select a 1listing of directives
processed, errors, comments, and a list of line
images in the program library. The locations of
all CWEOR, WEOR, ENDIF, IF, and CALL directives are
listed if a compile file is written. If L=0, all
listable output is suppressed. Output file name is
specified by the O parameter of the UPDATE control
statement; default file name is OUTPUT. iIf the
output file is connected to a terminal, the default
is L=1,

In quick mode only, Update produces an ordered
printout of the deck list of the program library
under the heading DECK LIST AS READ FROM OLDPL PLUS
ADDED NEW DECKS. A quick mode dummy Update run (no
decks added) produces a deck listing of the old
program library.

The output file always defaults to display code
characters unless the 08 option is specified.

SOURCE FILE

The source file is an optional file generated
during a correction or creation run. The source
file consists of the line images of an input stream
that allows generation of a new program library.
Only currently active line images are in
resequenced format during a subsequent creation
run, Only active DECK, COMDECK, WEOR, CWEOR,
WIDTH, CALL, TEXT, IF, ENDIF, and ENDTEXT
directives, in addition to all active text, are
part of the source file. The line images in the
source file do not contain line identifiers.

The source file mname 1is specified by the S
parameter of the UPDATE control statement; default
file name is SOURCE. The content of the file is
determined by the T parameter of the UPDATE control
statement and by Update mode and the file format of
the old program library as shown in table 2-2. The
user is responsible for routing the source file to
a punch or other output device.

If either the S or S6 parameter is specified, the
source file is written in display code. If the S8
parameter is specified, it is writtem in ASCII
8/12, The character set of the old program library
has no effect on the S8 parameter.

MERGE FILE

The merge file contains a program library to be
merged with the old program library into a new
program library. Update adds the deck list and
directory from the merge file to the deck list and
directory on the old program library. Any names on
the merge file that duplicate names on the old
program library are modified to make them unique as
follows:

@ The last character of the name is changed by
adding 01 (modulo 55g) until all valid char-
acters have been tried.

3 A character is appended to the name and the
first step is repeated. Characters are
appended until the name reaches nine characters.

If no unique name can be generated by this method,
the Update run is abnormally terminated.
Directives that reference these changed names are
modified to agree with the new name. All names
that required modification are listed in the output
file.

Merge file name is specified by the M parameter of
the UPDATE control statement; default name is
MERGE. All Update functions that are valid in a
correction run are valid with the merge parameter.,
Care should be exercised when including
modifications in a merge run. Update might change
a name to which correction 1lines have been
applied. 1In this case, corrections can refer to
the wrong deck or correction set.

Decks from the merge file are added to the new
program library after all decks from the old
program library are added. This sequence of decks
in the new program library can be altered by the
MOVE directive if desired.

PULLMOD FILE

The pullmod file contains directives and text of
recreated correction sets specified on PULLMOD
directives. These re-created correction sets
produce the same vresults as the original sets.
This feature permits a user to take an earlier
version of the library and apply selected
correction sets. The file has the same format as
an input file.

File name is specified by the G parameter of the
UPDATE control statement. If no file is specified,
pulled modifications are written to the source file
specified by the S or T parameter; if no source
file is specified, the re-created correction sets
are written to a file named SOURCE,

60449900 F

UPDATE DIRECTIVES 3 {

create

Directives allow the user to
libraries. Directives also extensively control and

direct the correction and modification process. L)
Directives perform the following operations:

program ®

o
e Identify decks.

© Control compile file contents.

Manipulate primary or secondary input streams.
Control overall handling of the input file.

Modify program library contents

Each directive is summarized in table 3-1.

TABLE 3-1. SUMMARY OF UPDATE DIRECTIVES

60449900 D

Directive Keyword R
Abbreviation Directive Format Use
none *ABBREV Resume checking for abbreviated directives.
*AF *ADDFILE 1fn,name Read creation directives and text from
named file and insert after specified deck
or line.
B *BEFORE line Write subsequent text lines before line !
identified.
*CA *CALL deck Write common deck to compile file.
*CH *CHANGE oldid,newid, . . . ,o0ldid,newid Change correction set identifier.
#CD *COMDECK deck ,NOPROP Define common deck and propagation
parameter.
*C *#COMPILE deckl,deck2, . . . ,deckn Write specified decks to compile file,
source file, and new program library.
*COMPILE deckl.deck2 Write inclusive range of decks to compile
file, source file, and new program library.
*CY *COPY deck,line Copy and insert specified line from named l
deck.
*COPY deck,linel,line2 Copy and insert specified range of lines l
from named deck.
*COPY deck,linel,line2,1fn Copy specified range of lines from named |
deck to specified file.
*CW *#CWEOR level Conditionally write end-of-record (end-of-
section for SCOPE 2) or end-of-file.
*#DK *DECK deck Define deck to be included in program
library.
*DC *DECLARE deck Restrict corrections to named deck.
*DF *DEFINE namel,name2, . . . ,namen Define names to be tested by IF directive
while compile file is being written.
*D *DELETE line Deactivate specified line and optionally in- I
sert text in its place.
*DELETE linel,line2 Deactivate inclusive range of lines and '
optionally insert text in their place.

TABLE 3~1., SUMMARY OF UPDATE DIRECTIVES (Contd)

Directive Keyword

. . U
Abbreviation Directive Format se
I none *DO identl,ident2, . . . ,identn Reactivate yanked lines in specified
correction sets until a DONT is encountered.

*DT *DONT identl,ident2, . . . ,identn Terminate the DO for specified correction
sets.

*EI *ENDIF Indicate end of conditional text.

*ET ENDTEXT End delimiter for sequence of lines
identifying text.

*#1ID *IDENT idname ,B=num,K=ident,U=ident Define correction set, bias for seqnum, and
whether specified correction sets must be
known or unknown to process this set.

none *IF type,name,num Write specified number of following lines to
the compile file if name of type DECK, IDENT,
or DEF is known.

*IF ~type,name,num Write specified number of following lines to
the compile file if name of type DECK, IDENT,
or DEF is unknown.

*T *INSERT line Write subsequent text lines after line
identified.

*L.T *#LIMIT n Limit listable output to n lines.

l *L *LIST Resume listing lines encountered in input

*M

*NA

*NL

*PM

*PD

*P

*RD

*RW

*MOVE deckl,deck2

*NOABBREV

*NOLIST

*PULLMOD identl,ident2, . . . ,identn

*PURDECK deckl,deck2, . . . ,deckn

*PURDECK deckl.deck2

#*PURGE identl,ident2, . . . ,identn

*PURGE identl.ident2

PURGE ident,

*READ 1fn

*RESTORE line

*RESTCRE linel,line2

*REWIND 1lfn

stream.

Place deckl after deck2.

Do not check for abbreviated directives.
Disable list option 4.

Re—-create specified correction sets and
write them to file specified by the G

option.

Permanently remove specified decks from
program library. :

Permanently remove inclusive range of decks.

Permanently remove specified correction sets
from program library.

Permanently remove inclusive range of
correction sets.

Permanently remove specified correction set
and all sets introduced after it.

Read directives and text from specified file.

Reactivate specified line and opticnally
insert text after it.

Reactivate inclusive range of lines and
optionally insert text after them.

Reposition named file to beginning-of-
information.

60449900 D

TABLE 3-1. SUMMARY OF UPDATE DIRECTIVES (Contd)

Directive Keyword Directive Format Use
Abbreviation
*SP #SELPURGE deckl.identl,deck2.ident2, Permanently remove all lines in specified
« « o« ,deckn.identn deck that belong to specified correction set.
*SY *SELYANK deckl.identl,deck2.ident2, Deactivate all lines in specified deck that
« « + j,deckn-identn belong to specified correction set.
*5 *SEQUENCE deckl,deck2, . . . ,deckn Resequence all active lines and purge all
inactive lines in specified decks.
*SEQUENCE deckl.deck2 Resequence all active lines and purge all
inactive lines in inclusive range of decks.
*SK *SKIP 1lfn,n Reposition named file forward the specified
number of logical records.
*T *TEXT Beginning delimiter for sequence of lines
identifying text.
T *W *WEOR level Write end-of-record or end-of-file according
f; to specified level.
*WI *WIDTH linelen,idlen Reset size of line image written to compile
file.
*Y *YANK identl,ident2, . . . ,identn Temporarily remove specified correction sets
from program library.
*YANK identl.ident2 Temporarily remove inclusive range of
correction sets.
N *YD *YANKDECK deckl,deck2, . . . ,deckn Temporarily-deactivate decks specified.
} none */comment Copy text to listable output file.

DIRECTIVE FORMAT

*keyword p~-list

The general format of Update directives is shown in * Master control character that distin-
figure 3-1. A directive must begin with the master guishes a directive from a text line.
control character in column one. Comments can be Must appear in column 1. This char-
placed after the last parameter of the directive. acter can be changed through the *

Ty The comment and final parameter must be separated parameter of the UPDATE control

‘é by one or more blanks. Most directives have both a statement.

i full keyword and an abbreviated keyword as shown in
table 3-1; when the NOABBREV directive 1is in keyword Name of one of the Update directives
effect, Update does not recognize the abbreviated or an abbreviation for a directive.
forms of directive names. Any line in the input No blanks can occur between the master
stream that cannot be recognized as a directive is control character and the keyword; a
assumed to be text. comma or blank terminates the keyword.

p-list Parameters identifying decks, cards,

The master control chracter is recorded in the
program library. For a correction run, the master
control character should match the character used
when the program library was created. If the
characters do not match, Update uses the character
specified in the program library.

Since Update scans all 256 columns when interpret-
ing directives, comments or sequencing information
from a previous run can be interpreted as the
parameter list. Update interprets comments or
sequencing information as the parameter list when a
list is not specified on WEOR, CWEOR, DECLARE, or

60449900 D

lines, or files. Some directives have
no parameters. Multiple blanks can
appear between the keyword and param-
eters. Parameters in the list are
separated by commas; embedded blanks
cannot appear in the list. A blank
terminates the p-list.

Notice that several parameters con-
tain a period as part of a single
parameter.

Figure 3-1. General Update Directive Format

ADDFILE directives. To avoid this problem, a null
parameter list should be specified on these
directives in the following manner:

*WEOR, , *DECLARE , ,

*CWEOR,, *ADDFILE,,,

Specifying a null parameter field ensures that
Update will use the default values as parameters
rather than wusing the comments or sequencing
information. Errors will occur if Update tries to
use the comment or sequencing information as the
directive parameter list.

LINE IDENTIFIERS

Each line image in a program library is uniquely
identified by an identifier and a sequence number.
The identifier is the name of the deck or
correction set from which the line image
originated; Update supplies the sequence number.
Line didentifiers assigned by Update are usually
permanent; they can be changed only through the use
of the SEQUENCE and CHANGE directives.

Update recognizes one full form and two short forms
of line identifiers. The full form line identi-
fiers are shown in figure 3-2. The two short forms
of line identifiers, which can be used on BEFORE,
INSERT, DELETE, RESTORE, and COPY directives, are
expanded.

ident.seqgnum

ident. 1~ through 9-character name of a correc-

tion set or deck. A period terminates
the identifier.

segnum Decimal ordinal (1 through 131071)
representing the sequence number of the
Line within the correction set or deck.
Any character other than 0 through 9
terminates the sequence number.

Figure 3-2. Full Form of Line Identification

In the short form (shown in figure 3-3), idname is
assumed to be the last explicitly named identifier
given on a BEFORE, INSERT, DELETE, RESTORE, or COPY
directive, whether or not it is a deck name. The
dname is assumed to be the last explicitly named
identifier given on a BEFORE, INSERT, DELETE,
RESTORE, or COPY directive that is known to be a
deck name. Both of these default identifiers are
originally set to YANK$$$; therefore, the first
directive using a line identifier must use the full
form to reset the default.

seqnum Expands to idname.segnum where idname
is a correction set identifier, whether
or not it is also a deck name.

«segnum Expands to dname.segqnum where dname is
a deck name.

Figure 3-3., Expansion of Short Forms
of Line Identification

All deck names are also identifiers (but all
identifiers are not deck names). Thus, if EXAMPLE
is the deck name last used, and there is no
subsequent explicit reference to a correction set
identifier, then both .281 and 281 expand to
EXAMPLE, 281 as the line identifier. TIf there is an
explicit reference to a correction set identifier
ABC after the explicit reference to the deck name,
then 281 would expand to the 1line identifier
ABC.281 while .281 would expand to EXAMPLE.281.

Figure 3~4 shows the differences in identifier
expansion depending on the order of the dir-
ectives. A is a deck name and B is a correction
set identifier on an old program library.

*ID C
*INSERT A.2

data Lline
*INSERT B.1

data line
*D 2, 3 expands to *DELETE B.2,B.3
*D 4, .5 expands to *DELETE B.4,A.5
*D .7, 5 expands to *DELETE A.7,B.5
*D .9, .10 expands to *DELETE A.9,A.10
whereas:
*ID D
*INSERT B.1

data line
*INSERT A.2

data line
*D 2, 3 expands to %DELETE A.2,A.3
*D 4, .5 expands to *DELETE A.4,A.5
*D .7, 5. expands to *DELETE A.7,A.5
*D .9, .10 expands to *DELETE A.9,A.10

Figure 3-4. Examples of Line
Identifier Expansion

DECK IDENTIFYING
DIRECTIVES

Each deck to be placed on a program library must be
introduced by a DECK or COMDECK directive during a
creation or correction run. When Update encounters
one of these directives in the input stream prior
to any correction directive, the run is considered
to be a creation run. When Update encounters one
of these directives while inserting new text lines,
it terminates the insert and adds the decks to the
program library following the line specified.

When a deck is added through the use of a DECK or
COMDECK directive during a creation run or an
ADDFILE directive during a correction run,
termination of that deck occurs when Update
encounters another DECK or COMDECK directive, or
the end of a system-logical record. Lines within
that deck are identified by the name of the deck or
common deck to which the lines belong and are
numerically sequenced beginning with 1 for the DECK
or COMDECK directive. When a deck is inserted
during a correction run as if it were text (that
is, through the use of an INSERT, DELETE, BEFORE,
or RESTORE directive), the deck is terminated by
any condition that normally terminates insertion.
The contents of the deck, including the DECK or
COMDECK line, are identified by the correction set
name and are numerically sequenced as if they were
normal insertion text.

60449900 F

Frequently, a DECK or COMDECK directive precedes
each program or subprogram in a given program
library. More than one subprogram, however, can be
included in a deck, as is indicated in figure 3-5.
Normally, two programs are grouped together if
modification of one program requires reassembly of
both programs.

*DECK FIRST
IDENT FIRST
END
IDENT SECOND
END
*COMDECK FDATA
BLOCK DATA
COMMON/J3 /A (10)
DATA A/3+0., 7%1.0/
END

Figure 3-5, Example of Deck Structure

Because DECK and COMDECK directives can be
deactivated by DELETE, YANK, or SELYANK, line
images belonging to one deck at the beginning of an
Update run can belong to a different deck at the
end of the run. When a DECK or COMDECK directive
is deactivated, all line images in the deactivated
deck become members of the preceding deck on the
program library; they retain their original line
identifiers. If there is no preceding deck, then
they become part of the YANK$$S deck.

DECK DIRECTIVE

The DECK directive establishes a deck in the
program library. 1Tt is one of the two directives
that establishes the existence of a creation run.
The directive can also be used in any correction
run to add a deck to the location indicated by a
preceding INSERT, BEFORE, DELETE, or RESTORE
directive. Each deck must have a wunique name
within the program library. The DECK directive
itself is part of the program library and has a
sequence number of one within the name established
by the directive. DECK directive format is shown
in figure 3-6.

*DECK deck

deck Name of deck. Must be 1 through 9 char-
acters. Any character in the CDC display
code character set is allowed, except
blank, pericd, comma, and colon. Must
not duplicate the name of any other deck
in program library.

Figure 3-6. DECK Directive Format

COMDECK DIRECTIVE

The COMDECK directive establishes a common deck
that can be called from other decks as they are
being written to the compile file. It is one of
the two directives that establishes the existence
of a creation run. The directive can be used in
any correction run to add a common deck to the

60449900 E

location specified by a preceding INSERT, BEFORE,
or RESTORE directive. Each common deck must have a
unique name. The COMDECK directive itself is part
of the program library and has a sequence number of
one within the name established by the directive.
The COMDECK directive format is shown in figure 3-7.

*COMDECK deck,NOPROP

deck Name of deck. Must be 1 through 9
characters. Any character in the CDC
display code character set is allowed,
except blank, period, comma, and colon.
Must not duplicate the name of an
existing deck.

NOPROP Indicates that decks calling this
common deck are not to be considered
as modified when the common deck itself
is modified; that is, the effects of
common deck changes are not to be

propagated during normal Update mode.
Optional.

Figure 3-7. COMDECK Directive Format

The NOPROP parameter of the COMDECK directive
determines whether a deck calling a corrected
common deck is to be considered as having been
corrected. 1f NOPROP is specified, only the common
deck is considered to be corrected. On the other
hand, if NOPROP is not specified, the common deck
and the calling decks are considered to be
corrected.

A common deck should be placed before any of the
decks that call it. If the common deck is placed
after a deck that calls it, Update might not be
able to find it. In addition, decks calling a
corrected common deck are not writtem to the
compile file if the calling deck precedes the
common deck and the mode is normal selective.

CORRECTION DIRECTIVES

Correction directives control updating of the old
program library. New text is assigned a unique
line identifier ©based on the correction set
identifier. The corrected program library is
written on the new program library; the old program
library is mnot actually changed. Correction
directives are illegal on a creation runm.

ADDFILE DIRECTIVE

The ADDFILE directive causes Update to add a file
of decks to the new program library. ADDFILE
differs from the READ directive in that the
contents of the specified file are limited to those
allowed on a creation run. Unless the specified
file is the primary input file, the READ directive
cannot appear in the added file. The first line
image of the specified file must be a DECK or
COMDECK directive. If the INPUT file is specified,
the READ directive can be the first image; a DECK
or COMDECK directive must then be the first line
image on the file specified by the READ directive.
An ADDFILE directive cannot appear among directives
read from the file specified by a READ directive.
The ADDFILE directive format is shown in figure
3-8, If only one parameter is specified, it is
assumed to be lfn.

3-5

*ADDFILE Lfn,name

Lfn Name of local file from which decks are
to be added. If Lfn is omitted, the
default is the file specified by the I
parameter of the Update control state-
ment; the separators are still required.

name Name of deck or identifier Line after
which decks are to be placed on the pro-
gram Llibrary. If omitted, the addition
is made after the last deck on the pro-
gram Llibrary.

If the name parameter is %, it refers to

the ident that is known to be a deck name

most recently mentioned on a BEFORE,

COPY, DELETE, INSERT, or RESTORE direc-

tive. If no such directive precedes the
' ADDFILE, the YANK$$$ deck is used.

Figure 3-8. ADDFILE Directive Format

When the specified file is not the primary input
file, Update adds directives and text until the end
of one system—-logical record is encountered.
Update then returns to the file specified by the I
parameter of the UPDATE control statement and
continues processing the primary input stream. The
specified file must have the same character set as
the primary input file. When the file specified on
the ADDFILE directive is the primary input file,
however, Update adds line images until a
noncreation directive or the end of the
system~logical recérd is encountered.

Update does not reposition the file specified on
the ADDFILE directive. Any repositioning must be
requested by the SKIP or REWIND directive.

BEFORE DIRECTIVE

The BEFORE directive inserts text line images and
compile file directives 1n the program library
before the specified line image. The line images
inserted are placed immediately after the
directive. Line images cannot be inserted into the
YANKS$SS deck. The inserted line images receive
line identifiers established by the correction set
name of the preceding IDENT directive. The BEFORE
directive format is shown in figure 3-9.

*BEFORE Line

Line Line identifier of Line before which the
insertion is to be made.

Figure 3~-9. BEFORE Directive Format

Unless a TEXT directive has been encountered,
Update terminates an insertion when it encounters
the next insertion directive or a PURGE, PURDECK,
IDENT, SELPURGE, ADDFILE, or SEQUENCE directive.
On the other hand, compile file directives are
inserted as if they are text after Update checks
for correct syntax. Update interprets all other
directives without terminating insertion; however,
the directives are not inserted into the deck.

3-6

CHANGE DIRECTIVE

The CHANGE directive renames correction set
identifiers. It cannot be used to change deck
names. As a secondary effect, changing the name of
the correction set invalidates any YANK or SELYANK
directives that refer to the set by its previous
name. Since a CHANGE directive goes into effect
immediately, any subsequent references to the
correction set must use the new name. The CHANGE
directive need not be part of a correction set.
CHANGE directive format is shown in figure 3-10.

*CHANGE oldid,newid,...,oldid, newid
oldid Name of correction set to be changed.

newid New correction set name. Must be 1
through 9 characters. Any character in
the CDC display code character set is
allowed, except blank, period, comma,
and colon. Must not duplicate the name
of any other correction set in the pro-
gram Llibrary.

Figure 3-10. CHANGE Directive Format

COPY DIRECTIVE

The COPY directive copies active line images from a
deck on the old program library and inserts the
images into another deck as if they are text in an
input stream, or the COPY directive copies active
line images to a specified file. Since Update
copies the line images into a deck before applying
corrections to them, line images can be copied and
original images can be modified in the same run.
An attempt to copy line images introduced during
the same Update run produces an informative
message. The COPY directive format for copying
line images to a deck on the program library is
shown in figure 3~11. The COPY directive format
for copying line images to a file is shown in
figure 3-12.

A. Copy specified line.
*COPY deck,line

deck Name of deck on old program Library
that contains the line to be copied.

Line Line identifier of Line to be copied.
B. Copy range of Llines.
*COPY deck,Llinel,line2

deck Name of deck on old program Library
that contains Llines to be copied.

Line1, Line identifiers of first and last
Line2 Lines 1in sequence of lines to be
copied.

Figure 3-11. COPY Directive Format -
Copy to Deck

60449900 E

J

*COPY deck,linel,line2,lfn

deck Name of deck on old program Llibrary that
contains lines to be copied.

Llinel, Line identifiers of first and last lines
Line2 in sequence of lines to be copied.

Lfn Name of file onto which lines are to be
copied. The user is responsible for the
disposition of this file since it is not
positioned either before or after the
copy. The file is written as a binary
file that contains 256~column line images
with one system—logical record (Section
for SCOPE2) for each COPY directive;
sequencing information is not included.

Figure 3-12. COPY Directive Format -
Copy to File

An INSERT, DELETE, BEFORE, or RESTORE directive
must be in effect to use COPY for copying 1line
images to a deck. In figure 3-13, example A, the
use of the COPY directive is wvalid because a
preceding INSERT directive has initiated inser-
tion. Line images BDECK.4 through BDECK.8 are
copied and inserted after the text lines. The
copied line images are sequenced as part of
correction set X. The input stream in figure 3-13,
example B, is not valid because insertion is not in
effect to indicate where to write the line image
copies.

A. Valid use of COPY

*IDENT X

*INSERT BLAP.11

(text Llines)

*COPY BDECK,BDECK.4,BDECK.8

B. 1Invalid use of COPY.

*IDENT X
*COPY BDECK ,BDECK.4 ,BDECK.8

Figure 3-13. COPY Directive Example

Placement in the input stream of a COPY directive
that copies line images to a file 1is not
restricted; COPY can appear anywhere in the primary
input stream. Copying line images to a file is
illegal, however, when a secondary input stream is
being read as a result of a READ directive.

DELETE DIRECTIVE

The DELETE directive deactivates a line image or a
group of line images and optionally inserts text
and directives after the deleted line images. The
line images to be inserted are placed immediately
after the directive. The inserted 1line images
receive line identifiers established by the
correction set name of the preceding IDENT
directive. The DELETE directive format depends on
whether line images to be deactivated are specified
by line identifier or by a range of lines, as shown
in figure 3-14,

60449900 E

A. Delete specified Line
*DELETE Line

Line Line identifier for single Lline
to be deleted.

B. Delete range of Llines
*DELETE Llinel,line2

linel, Line identifiers of first and

Line2 Last lines, in sequence of lines
to be deleted. Line Linel must
appear before Line2 in the exist-
ing library. The range can in-
clude Llines already in a deact-
ivated state.

Figure 3-14. DELETE Directive Format

Unless a TEXT directive has been encountered,
Update terminates an insertion when it encounters
the next insertion directive or a PURGE, PURDECK,
IDENT, SELPURGE, ADDFILE, or SEQUENCE directive.
On the other hand, compile file directives are
inserted as if they are text after Update checks
for correct syntax. Update interprets all other
directives without terminating insertion; however,
the directives are not inserted into the deck.

IDENT DIRECTIVE

The IDENT directive establishes the name for the
set of corrections being made. Lines added in this
correction set are sequenced within the name
specified. All correction set names must be
unique. If a new program library is not being
generated, a correction set need mnot begin with an
IDENT directive. In this case, Update uses the
default name of .NO.ID. for new text lines. The
established correction set identifier remains in
effect until Update encounters another IDENT
directive or a PURGE, SELPURGE, PURDECK, ADDFILE,
or SEQUENCE directive. IDENT directive format is
shown in figure 3-15.

*IDENT idname,B=num,K=ident ,U=ident

idname Name to be assigned to this correction
set. Must be 1 through 9 characters.
Any character in the (DC display code
character set is allowed, except blank,
period, comma, and colon. Must not
duplicate the name of another cor-
rection set or deck. This directive
causes a new entry in the directory.

B=num Bias to be added to sequence numbers
within deck. Optional; 1 is default.

K=ident Indicator that specified correction
set name must exist in the directory
of the library before corrections can
be made. Optional.

U=1ident Indicator that specified correction
set name must not exist in the direc-
tory of the library. Optional.

Figure 3-15. IDENT Directive Format

Omitting idname causes a format error. If idname
duplicates a name previously used, Update issues an
error message. Both errors are nonfatal as long as
no new program library is created in the same run.

The B, K, and U parameters on the IDENT directive
can appear in any order. If more than one B
parameter is specified, Update uses the last one
encountered. More than one K or U parameter can be
specified; in this instance, all correction set
names must be known or unknown as specified before
the correction set is processed. (An identifier is
known whether it is active or inactive; an
identifier that has been yanked is still known. To
become unknown, an identifier must be purged.) If
the criteria of these parameters is not met, Update
skips the correction set and resumes processing
with the next IDENT, PURGE, SELPURGE, PURDECK, or
ADDFILE directive.

In the following example, the bias of 100 is added
to all ZAP correction set line sequence numbers:

*IDENT ZAP,B=100,K=ACE,U=NON, U=ARF

The first line image in correction set ZAP has a
sequence number of 101, not 1. Update skips the
correction set if ACE is unknown or either NON or
ARF is known.

INSERT DIRECTIVE

The INSERT directive inserts text line images and
compile file directives in the program 1library
after the specified line image. The line images to
be inserted are placed immediately after the
directive. Line images cannot be inserted into the
YANKSSS deck. The inserted line images receive
line identifiers established by the correction set
name of the preceding IDENT directive. The range
of line images canmnot be used when inserting. This
causes only the first line image to be processed.
INSERT directive format is shown in figure 3-16.

*INSERT Lline

Line Line identifier of line after which in-
sertion is to be made.

Figure 3-16. INSERT Directive Format

Unless a TEXT directive has been encountered,
Update terminates an insertion when it encounters
the next insertion directive or a PURGE, PURDECK,
IDENT, SELPURGE, ADDFILE, or SEQUENCE directive.
On the other hand, compile file directives are
inserted as if they are text after Update checks
for correct syntax. Update interprets all other
directives without terminating insertion; however,
the directives are not inserted into the text.

MOVE DIRECTIVE

The MOVE directive enables the user to reorder
decks while producing a new program library. The
deck to be repositioned is moved from its position

on the old program library and placed after the
specified deck on the new program library. The
YANKS$$S deck cannot be moved. A MOVE referencing a
deck introduced in the same Update run produces an
informative message. This directive does not
terminate insertion and uneed not be part of a
correction set. MOVE directive format is shown in
figure 3-17.

*MOVE deck1,deck2

deck1 Deck name on old program library to be
moved.

deck2 Deck name after which deckl is to be
placed on new program library.

Figure 3-17. MOVE Directive Format

PURDECK DIRECTIVE

The PURDECK directive permanently removes a deck or
group of decks from the program library. However,
the VYANKS deck cannct be purged. Every line
image in a deck 1is purged, regardless of the
correction set that contains the 1line image.
Purging, unlike yanking, cannot be rescinded. A
PURDECK directive can appear anywhere in the input
stream; dits appearance terminates the current
correction set. PURDECK directive format depends
on whether decks to be purged are specified
individually by deck name or by a range of deck
names, as shown in figure 3-18.

A. Purge decks listed
~ *PURDECK deck1,deck2,...deckn

deck Name of deck to be purged.
Names can appear in any order.

B. Purge range of decks
*PURDECK deck1.deck2

deck1.deck?2 Names of first and lLast decks,
inclusive, to be purged. Names
must appear in the relative
order in which decks exist in
the deck Llist.

Figure 3~18. PURDECK Directive Format

The name of a purged deck is removed from the deck
list; it can be reused as a deck name. An entry
for the purged deck remains in the directory,
however, until removed through the use of the E
parameter on the UPDATE control statement. The
deck name can also be removed from the directory by
resequencing the library, that is, by creating a
source file in one Update run and then using the
source file as input on a subsequent creation run.
Until a deck name is removed from the directory, it
cannot be used as a correction set identifier.
(See the PURGE directive.)

60449900 F

PURGE DIRECTIVE

The PURGE directive permanently removes a
correction set or group of correction sets from the
program library. Every line in the correction set

is purged, regardless of its status as active or
inactive. Purging, unlike yanking, cannot be
rescinded. A new program library written during

the same run treats the purged correction set as if
it had never existed. A PURGE directive can appear
anywhere in the input stream; it terminates the
current correction set. PURGE directive format, as
shown in figure 3-19, depends on whether correction
sets to be purged are specified individually by
correction set name, by a range of correction set
names, or by relative time of introduction into the
program library.

A. Purge listed correction sets
*PURGE 1ident1,ident2,...,identn

Identifier of a correction
set to be purged. Identi-
fiers can appear in any
order.

ident

B. Purge range of correction sets
*PURGE identl.ident2
identl.ident2 Identifiers of first and last

correction sets, inclusive,

to be purged. Identifiers
must appear in the relative
order in which the correction
sets were introduced into the
program Llibrary; that is,

they must appear in the order
they exist in the directory.

C. Purge later correction sets
PURGE 1ident,

ident Identifier of correction set
to be purged along with all
correction sets introduced

after the specified correc-

tion set.

* Indicator that the program
Llibrary is to return to an
earlier level. Intervening
PURGE directives and SEQUENCE
directives prevent complete
return,

Figure 3-19. PURGE DIRECTIVE Format

If Update cannot locate a specified correction set,
it issues an error message. Purged identifiers can
be reused on subsequent correction sets provided
they do not appear in the YANK$$$S DECK as a YANK
directive parameter.

RESTORE DIRECTIVE

The RESTORE directive reactivates a line image or a
group of line images previously deactivated through

60449900 D

a DELETE directive. Any text line
compile file directives immediately following the
RESTORE directive are inserted after the last line
image identified on the directive. Any inserted
line images receive line identifiers established by
the correction set name of the preceding IDENT
directive. RESTORE directive format depends on
whether line images to be reactivated are specified
by a line identifier or by a range of lines, as
shown in figure 3-20.

A. Restore specified Line.
*RESTORE Line

Lline Line identifier of Line to be re-~
stored.

B. Restore range of lines.
*RESTORE Llinel,line2

Line identifiers of first and last
lines, inclusive, in sequence of
Lines to be restored. Linel must
appear before Line2 in the existing
Library. Any lines in the sequence
that are already active are not
affected.

Linet,
Line2

Figure 3-20. RESTORE Directive Format

Unless a TEXT directive has been encountered,
Update terminates an insertion when it encounters
the next insertion directive or a PURGE, PURDECK,
IDENT, SELPURGE, ADDFILE, or SEQUENCE directive.
On the other hand, compile file directives are
inserted as if they are text after Update checks
for correct syntax. Update interprets all other
directives without terminating insertion; lowever,
the directives are not inserted into the deck.

SELPURGE DIRECTIVE

The SELPURGE directive
effects of the specified
specified deck.
the specified correction set are purged from the
specified deck. Line images Dbelonging to the
specified correction set that are in other decks
are not purged.
can be purged through SELPURGE,. A SELPURGE
directive can appear anywhere in the input stream;
it terminates the current correction set. SELPURGE
directive format is shown in figure 3-21.

removes the
on the

permanently
correction set

*SELPURGE deck1.ident1,...,deckn.identn

deck Name of deck from which correction set
is to be removed.
ident Name of correction set to which cards to

be removed belong. It must be separated
from the deck by a period.

Figure 3-21. SELPURGE Directive Format

images and

Only the line images belonging to I

Line images in the YANKSSS deck '

SELYANK DIRECTIVE

The SELYANK directive temporarily removes the
effects of the specified correction set on the
specified deck. Only the line images belonging to
the specified correction set are yanked from the
specified deck. Line images belonging to the
specified correction set that are in other decks
l are not yanked. Line images in the YANK$$S deck
can be yanked through SELYANK. A SELYANK directive
must be part of a correction set; it is placed in
the YANK$$S deck. The SELYANK directive format is
shown in figure 3-22,

*SELYANK decki.ident1,...,deckn.identn

deck Name of deck from which correction set
is to be removed.

ident Name of correction set to which lines to
be removed belong. It must be separated
from deck by a period.

Figure 3-22. SELYANK Directive Format

SEQUENCE DIRECTIVE

The SEQUENCE directive resequences active lines and
purges inactive lines from the specified deck(s).
Only those decks explicitly mentioned on the
SEQUENCE directive are resequenced. Thus, if a
correction set (for example, SET1) affects more
than one deck on a program library (for example,
DECKl and DECK2), and only DECKl has been
subsequently resequenced through SEQUENCE, the
SEQUENCE directive does not affect SET1 1lines
within DECK2, The YANKS$SS deck cannot be
resequenced. SEQUENCE directive format, as shown
in figure 3-23, depends on whether decks to be
resequenced are specified individually by name or
are specified as a range of deck names.

A. Resequence listed decks.

*SEQUENCE deck1,deck2,...,deckn

deck Name of deck to be resequenced.
B. Resequence range of decks.

*SEQUENCE deck1.deck2

deck1.deck2 Name of first and Last decks,

inclusive, to be resequenced.
Deck1 must appear before deck2
in old program Library,

Figure 3-23. SEQUENCE Directive Format

Update normally allows deck and correction sets
having the same name to coexist on the old program
library. If a deck having the same name as a
correction set is resequenced and lines for the
correction set are in other decks, Update purges
any modifications made by that correction set
outside the resequenced deck to prevent duplicate
identifiers. ,

3-10

The SEQUENCE directive does not result in
identifiers being deleted from the directory even
if, as a result of resequencing, no references to
an identifier are on the library. This situation
arises when all the corrections of a correction set
refer to a deck that is resequenced. Deletion of
the identifier, in this case, requires an edit
(E parameter) or PURGE in a subsequent Update run.

A deck cannot be renamed and resequenced in the
same Update run. (To rename a deck, delete the
first line of the deck and replace it with a new
DECK directive containing the new name.)

~ YANK DIRECTIVE

The YANK directive temporarily removes a correction
set or group of correction sets from the program
library. Line images activated by the correction
set are deactivated; line images deactivated by the
correction set are reactivated. If a correction
set has been yanked, it is ignored during compile
file or source file generation. The effects of the
YANK directive can be selectively nullified through
the introduction of DO and DONT directives in the
decks. Update places the YANK directive in the
YANK$SS deck. The YANK directive format, as shown
in figure 3-24, depends on whether correction sets
to Dbe yanked are specified individually by
correction set name or by a range of correction set
names.

A. VYank lListed correction sets
*YANK ident1,ident2,...,identn

ident Identifier of a correction
set to be yanked. Identi-
fiers can appear in any
order.

B. Yank range of correction sets
*YANK ident1.ident2

Identifiers of first and last
correction sets, inclusive,
to be yanked. Identifiers
must appear in the relative
order in which the correction
sets were introduced into the
program Llibrary; that is,
they must appear 1in the order
they exist in the directory.

ident1.ident2

_respects:

Figure 3-24. YANK Directive Format

The YANK directive differs from PURGE in several
YANK must be part of a correction set;
YANK does not terminate the current correction set;
and the effects of a YANK directive can be
rescinded.

YANKDECK DIRECTIVE

The YANKDECK directive temporarily removes all
lines within the decks specified. All lines are
deactivated, even 1f they belong to a correction
set. YANKDECK differs from PURDECK in several

60449900 D

)

J

respects: YANKDECK must be part of a correction
set; it does not terminate the current correction
set; and its effects can be rescinded. The
YANKDECK directive format is shown in figure 3-25.

*YANKDECK deck1,deck2,...,deckn

deck Name of deck to be yanked. Names can
appear 1in any order.

Figure 3-25. YANKDECK Directive Format

The deck YANK$$S$ cannot be deactivated as a whole.
Individual YANK directives within this deck can be
yanked by a YANK directive, however.

COMPILE FILE DIRECTIVES

Compile file directives provide control over the
compile file. These directives are interpreted
when the program library decks are being corrected
and written onto the compile file. Calls for
common decks vresult in the common deck being
written on the compile file. Other directives
allow control of file format. WNone of the compile
file directives are written on the compile file.

The wuser can prepare the original deck with
embedded compile file directives (except for DO or
DONT) or the wuser «can insert compile file
directives into program library decks as a part of
a correction set. Compile file directives are not
processed when they are encountered in the input
stream (except for COMPILE); they are simply
considered as text lines to be inserted and
sequenced accordingly after wupdate checks for
correct syntax. To be recognized while the compile
file is being written, these directives must have
the same master control character as defined when
the library was created.

CALL DIRECTIVE

The CALL directive causes the active text of a
common deck to be writtemn onto the compile file.
The directive itself is stored as part of a deck
and can be referenced by its line identifier. CALL
is effective only within a deck or common deck.
Common decks can call other common decks, but a
common deck must not either call itself or call a
common deck that contains a call to the common
deck. VNeither the CALL directive nor the COMDECK
directive which defined the deck is written to the
compile file. The CALL directive format is shown
in figure 3-26.

*CALL deck

deck Name of an existing common deck to be
written to the compile file.

Figure 3-26. CALL Directive Format

Common decks can also be called from secondary old
program libraries. If COMDECK names are duplicated
on any secondary old program libraries, Update uses

60449900 E

the first COMDECK encountered according to the
order of the secondary old program libraries as
specified by the P parameter of the UPDATE control
statement.

COMPILE DIRECTIVE

The COMPILE directive indicates which decks are
written to the compile file. During normal mode,
decks specified on COMPILE directives and corrected
decks are written to the compile file. During
quick mode, decks specified on COMPILE directives
and any common decks called by the directives are
written to the compile file. The directive is
ignored during a full Update.

The directive also affects the contents of any new
program library and source file as shown in
table 2-2 in section 2, The COMPILE directive
format, as shown in figure 3-27, depends on whether
decks to be written are specified individually by
name or are specified as a range of deck names.

A. Compile listed decks

*COMPILE deck?,deck2,...,deckn

deck Name of deck to be written to
the compile file, new program
tibrary file, and source file.

B. Compile range of decks
*COMPILE deck1.deck2

deck1.deck2 Names of first and last decks
in range, inclusive, to be
written to the compile file.
The name of deck1 must appear
before the name of deck2 in
the old program Llibrary deck
List.

Figure 3-27. COMPILE Directive Format

Decks are written to the compile file in the order
that the decks exist on the old program library,
unless the K option is selected on the UPDATE
control statement. If the K option has been
specified, the decks are written in the order they
appear on the COMPILE directive.

When a deck is being introduced in the same run
that contains a COMPILE directive for the deck, the
DECK directive must appear before the COMPILE
directive. Otherwise, COMPILE directives can be
anywhere in the input stream. They do not affect
the current correction set name.

CWEOR DIRECTIVE

The CWEOR directive writes an end of system-logical
record (section for SCOPE 2) on the compile file if
data has been written to the file since the start
of UPDATE or since the last end of system~logical
record was written. The CWEOR directive format is
shown in figure 3-28.

*CHEOR Llevel
level Level of system-logical record.
For SCOPE 2, the following:

RT=W 0 thru 14 end-of-section
RT=W 15 end-of-partition
RT=S 0 thru 15 end~of-record
RT=2 0 thru 15 end-of-section
BT=C 0 thru 15 end-of-section

Figure 3-28. CWEOR Directive Format

DO DIRECTIVE

The DO directive causes Update to rescind a yank of
specified correction sets while writing text to the
compile file. If a 1line was deactivated as a
result of a YANK or SELYANK, the 1line is
reactivated. Likewise, if a line was activated by
a YANK or SELYANK, Update deactivates it. A DO
remains in effect wuntil a DONT directive is
encountered. The DO directive can be placed
anywhere in the library. If Update encounters a DO
for an wunyanked correction set, an informative
message 1s issued and the DO is ignored. The DO
directive format is shown in figure 3-29.

*D0 ident1,ident2,...,identn

ident Name of correction set for which yanking
is to be rescinded or initiated.

Figure 3-29. DO Directive Format

DONT DIRECTIVE

The DONT directive terminates a DO directive. It
can also be used to initiate a yank of an unyanked
correction set. When Update encounters a DONT for
a correction set that has not been yanked, it yanks
the set until it encounters a DO directive for the
set. If the correction set has already been
yanked, Update issues an informative message and
ignores the DONT. The DONT directive can be placed
anywhere in the program library. The DONT
directive format is shown in figure 3-30.

*DONT ident1,ident2,...,identn

ident Name of correction set for which yanking
is to be rescinded or initiated.

directive. Since num takes precedence, the ENDIF
directive is included in the count of active lines
and is written on the compile file. The ENDIF
directive format is shown in figure 3-31.

*ENDIF

Figure 3-31. ENDIF Directive Format

IF DIRECTIVE

The IF directive conditionally writes text on the
compile file. When Update encounters an IF
directive, the text following the directive is
written or skipped depending on the condition. The
IF directive format, as shown in figure 3-32,
depends on whether the specified name is to be
known or unknown for the text to be written on the
compile file.

A. Name must be known (on old program Library).
*1F type,name,num

B. Name must be unknown (not on old program
Library).

*IF ~type,name,num
type Type of condition name.

DECK Name is deck name. To be
known, it must be in the deck
List on the primary old pro-
gram library.

IDENT Name is correction set iden-
tifier. To be known, it must
be in the directory on the
primary old program library.

DEF Name is defined through
DEFINE directive on the old
program Library.

When type is not preceded by a minus
sign, the name must be known for text
to be written. When type is preceded
by a minus sign, the name must not be
known for text to be written.

name Deck name, correction set identifier,
or defined name, according to type.

num Number of active Line images to be
skipped if condition is not met.
Optional.

Figure 3-30. DONT Directive Format

ENDIF DIRECTIVE

The ENDIF directive indicates the end of
conditional text. It is used with IF when the num
parameter is omitted from the IF directive. ENDIF
should not be used if num is specified on the IF

Figure 3-32. 1IF Directive Format

If the num parameter is omitted and the condition
is not met, Update searches for an ENDIF directive

and resumes processing of the deck at that point;
if ENDIF is not found, then the remainder of the PL

is skipped and the compile file stops at this
point; mno error message 1is written. When the
condition is met, no lines are skipped.

60449900 D

When an IF directive is encountered on a secondary
old program 1library, Update only searches the
directory, deck 1list, and YANK$$S deck on the
primary old program library in trying to satisfy
the conditional. The deck lists, directories, and
YANKSS decks of the secondary old program
libraries are not searched.

When both an IF directive is encountered as a
result of a CALL and a matching ENDIF directive is
found as the result of a second CALL, the range of
the IF, ENDIF pair is unpredictable.

WEOR DIRECTIVE

The WEOR directive causes the termination of the
current system~logical record on the compile file
with the specified level. The WEOR directive
format is shown in figure 3-33.

*WEOR level
Level Level of system-logical record.
For SCOPE 2, the following:

RT=" 0 thru 14 end-of~-section
RT=H 15 end-of-partition
RT=8 0 thru 15 end-of-record
RT=Z 0 thru 15 end-of~section
BT=C 0 thru 17 end-of-section

Figure 3~33. WEOR Directive Format

WIDTH DIRECTIVE

The WIDTH directive overrides the default compile
file line image width settings, as specified by D
and/or 8 on the UPDATE control statement. WIDTH
directives are ignored with compressed compile
files. The format for the WIDTH directive is shown
in figure 3-34.

*HIDTH Llinelen,idlen

Linelen Number of characters of Line image
text that is written.

idlen Width of the jdentification field fol~-
Lowing the line image.

Figure 3-34. MIDTH Directive Format

The sum of the length of linelen and idlen must be
equal to or less than 256 characters. If idlen is
set to O (zero), the identification field 1is
suppressed. The format of the fields linelen and
idlen are shown in figure 3-35., The sequence data
(8) is positioned within the identifier name field
(I) by the following procedure:

1. Blanking the field.

2., Putting in the identifier name, left-justified
with truncation on the right as needed.

3. Placing the sequence number over the field,

right-justified with truncation on the left as
needed.

60449900 D

Linelen Idlen
N _\/‘—-/Aﬁ_——k\
text image 1 S

Figure 3-35. Fields of Line Image
and Identification

If *WIDTH is specified with no parameters, the run
default settings are restored. If only the length
of the identification field is specified (*WIDTH
yidlen), then 1linelen 1is the previous setting
used. If only linelen 1is specified (*WIDTH
linelen), the previous setting of idlen is used.

FILE MANIPULATION
DIRECTIVES

File manipulation directives control secondary
input files during Update processing. These
directives can only appear in the primary input
stream. They are illegal on a secondary input file.

READ DIRECTIVE

The READ directive temporarily stops reading the
primary input stream and begins reading an input
stream from the specified file. READ differs from
ADDFILE in that the content of the file specified
by READ is not restricted except to prohibit the
appearance of another READ directive or the
ADDFILE, SKIP, and REWIND directives. Update reads
from the specified file one system—logical record

(section for SCOPE 2). Processing then continues
with the main input stream. The READ directive

format is shown in figure 3-36.

*READ Lfn

Lfn Name of alternate file containing input
stream.

Figure 3-36. READ Directive Format

The specified file cannot be one of the reserved
files specified by a parameter on the UPDATE
control statement. It can only be a local
secondary input file. Also, the specified file
must have the same character set as the primary
input file.

REWIND DIRECTIVE

The REWIND directive repositions the specified file
to beginning-of-information. The file to be
rewound cannot be one of the reserved files. It
can only be a secondary input file. The REWIND
directive format is shown in figure 3-37.

*REWIND Lfn

Lfn Name of file to be rewound.

Figure 3-37. REWIND Directive Format

SKIP DIRECTIVE

The SKIP directive repositions the named local file
forward one or more system—logical records. A
system—logical record (section for SCOPE 2) of

level 178 or end-of-information terminates skip-
ping. The SKIP directive format is shown in
figure 3-38.

*SKIP Lfn,n

Lfn Name of file to be positioned.

n Number of logical records (sections for

SCOPE 2) to be skipped in the forward
direction. If n is omitted, Update skips
one record (section).

Figure 3-38. SKIP Directive Format

INPUT STREAM CONTROL
DIRECTIVES

The input stream control directives allow the user
to specify whether or not Update is to recognize
abbreviated directives, delimit text, or control
which input stream lines are to be displayed on the
listing file.

ABBREV DIRECTIVE

The ABBREV directive causes checking for
abbreviated directives to be resumed. It is used
in connection with the NOABBREV directive. The
ABBREV directive format is shown in figure 3-39.

*ABBREV

Figure 3-39. ABBREV Directive Format

ENDTEXT DIRECTIVE

The ENDTEXT directive ends the condition
established by a prior text directive. If ENDTEXT
is encountered before TEXT, Update ignores it. The
ENDTEXT directive format is shown in figure 3-40.
Any information in columns 10 through 256 is taken
as a comment.

*ENDTEXT

Figure 3-40. ENDTEXT Directive Format

LIST DIRECTIVE

The LIST directive causes listing of lines in the
input stream to be resumed. It is wused in
connection with NOLIST. The LIST directive format
is shown in figure 3~41.

~of turning off the

*LIST

Figure 3-41. LIST Directive Format

NOABBREV DIRECTIVE

The NOABBREV directive causes Update to stop
checking for the abbreviated forms of the
directives. Update expands the name when it reads
an abbreviated form so that it is a full name. The
user has the option of not using abbreviations and
check through the NOABBREV
feature. In this mode, an abbreviated directive is
not recognized but is taken as text. The NOABBREV
directive format is shown in figure 3-42.

*NOABBREV

Figure 3~-42. NOABBREV Directive Format

NOLIST DIRECTIVE

The NOLIST directive disables 1list option 4.
Update stops listing lines in the input stream when
it encounters a NOLIST ‘and resumes listing lines
when it encounters a LIST. NOLIST directive format
is shown in figure 3-43.

*NOLIST

Figure 3-43. NOLIST Directive Format

LIST and NOLIST can occur anywhere in the input
stream. They do not terminate insertion or a
correction set. The LIST/NOLIST directives are
ignored if list option 0 is selected.

TEXT DIRECTIVE

The TEXT directive, wused in connection with
ENDTEXT, causes all following line images to be
treated as text, whether or not they begin with the
master control character and would otherwise be
considered as directives. When Update encounters a
TEXT directive, the TEXT directive line image and
all line images following it, up to and including
the ENDTEXT directive, are considered as text and
are writtem on the program library. A TEXT
directive in the input stream must be either in a
deck or ian text being inserted. The TEXT and
ENDTEXT directives are maintained on the program
library as text line images; however, they are not
written on the compile file. The TEXT format is
shown in figure 3-44. Any information in columns
10 through 256 is taken as a comment.

*TEXT

Figure 3~44. TEXT Directive Format

60449900 D

SPECIAL DIRECTIVES

The special directives provide extended features.
With the exception of DEFINE and PULLMOD, they can
appear any place in the input stream for creation
or correction runs.

DECLARE DIRECTIVE

The DECLARE directive protects decks other than the
declared deck from being inadvertently altered.
Subsequent corrections are restricted to the named
deck until Update encounters a DECLARE directive
with no deck name or another DECLARE directive with
a different deck name. This directive can only be
used when the DECLKEY installation option has been
assembled. The DECLARE directive format is shown
in figure 3-45,

*DECLARE deck

deck Name of deck to which following correc-
tions are restricted. Omitting deck
nullifies a previous DECLARE.

Figure 3-45. DECLARE Directive Format

When the DECLARE directive is encountered, the
following restrictions go into effect:

° PURGE and YANK directives are illegal.

° INSERT, DELETE, RESTORE, and BEFORE directives
can apply only to lines in the declared deck.
if they do not, the operation is not performed
and Update issues an informative message.

° Inserting or reactivating a DECK or COMDECK
directive is illegal.

New decks inserted via the ADDFILE directive need
not be named in a DECLARE directive.

DEFINE DIRECTIVE

The DEFINE directive establishes a condition to be
tested by the IF directive. The names on a DEFINE
directive are unrelated to correction set
identifiers or deck names. Update places DEFINE
directives in the YANKSS deck. A DEFINE directive
can be placed anywhere in a correction set. The
DEFINE directive format is shown in figure 3-46.

*DEFINE namel,name2,...,namen

name Name for subsequent testing by IF
directive.

Figure 3-46. DEFINE Directive Format

END DIRECTIVE

The END directive is ignored in the input stream.
Update does not copy it onto the old program
library.

60449900 F

The END directive provides compatibility with the
SCOPE EDITSYM program. The END directive format is
shown in figure 3-47.

*END

Figure 3-47. END Directive Format

LIMIT DIRECTIVE

The LIMIT directive changes the maximum size for
the listable output file from the default value of
6000 lines to the specified number of lines. It
should be one of the first lines encountered in the
input stream. The LIMIT directive will not appear
in the new program library. The LIMIT directive
format is shown in figure 3-48.

*LIMNIT n

n New Line Limit for Llistable output.

Figure 3-48. LIMIT Directive Format

When the specified limit is reached, options 3
(line image, deck name, and modification key) and 4
(input stream) are turned off. Errors and direc-
tives are still listed, however, if options 1 and 2
were selected. Options 5 through 9 are not
affected. Refer to L parameter in section 4.

PULLMOD DIRECTIVE

The PULLMOD directive causes the program library to
be searched for 2all line images belonging to each
specified correction set and reconstructs a set of
directives and text. The reconstructed correction
set produces the same results as the original set.
The search of the library is performed at the end
of the Update run. Therefore, any modifications
made by the curreat run are reflected in the
PULLMOD results., Each reconstructed correction set
is written to the file specified by the G parameter
on the UPDATE control statement. All of the sets
are contained within one system—logical record
(section for SCOPE 2) on the file. The PULLMOD

directive format is shown in figure 3-49. The f

PULLMOD directive can be used only when the PMODKEY
installation option has been assembled for Update.

*PULLMOD ident1,ident2,...,identn

ident Name of correction set to be re-created.

Figure 3-49. PULLMOD Directive Format

The user is responsible for determining whether or
not the reconstructed correction sets accurately
reflect the original corrections. PULLMOD is
unable to determine if line images have been purged
subsequent to the addition of the correction sets
requested.

A pullmod file has the same format as an input
file. This feature permits a user to take an
earlier version of the library and apply selected
correction sets.

/ COMMENT DIRECTIVE

The / directive introduces a comment into the
listable output file. Update ignores this 1line
except to copy it to the listing file. A comment

can appear at any place in the input stream. The
slash can be redefined as another character through
the / comment directive format as shown in figure
3-50. The slash must appear in column 2. Column 3
must be a comma or blank.

*/comment

Figure 3-50. Comment Directive Format

60449900 F

UPDATE CONTROL STATEMENT 4

The Update utility is called by the UPDATE control
statement. Parameters specify options and files
for the run. The format of the call is shown in
figure 4-1. The word UPDATE must begin in column
one. See the operating system reference manual for
additional control statement syntax requirements.

UPDATE(p—~List)

p-list Parameters specifying options. Param-
eters in the Llist are separated by
commas. A left parenthesis or a comma
must separate the List from the word
UPDATE. A right parenthesis or a
period terminates the statement.

Figure 4-1. UPDATE Control Statement Format

PARAMETERS

All update parameters are optional and can appear
in any order. The parameters that specify files
(C, 6, I, XK, M, N, 0, P, S, T) optionally can be
followed with either the digit 6 or 8, indicating
6-bit display code or 8-bit ASCII.

When using the C, G, K, O, P, S, or T parameters,
the digit 6 forces the character set of the file to
be 6-bit display code. The digit 8 forces the
character set to be 8-bit ASCII. For example,
C8=FILE specifies that the decks are to be written
to the compile file named FILE using the ASCII
character set. The 6 and the 8 cannot both be
specified at once for the same file. These
parameters each have a default of either display
code or ASCII, which can be overridden by using
either the 6 or 8 digit (6 overrides an ASCII
default and 8 overrides a display code default).

When wusing the I parameter without the 6 or 8
digit, Update will determine the correct character
set to use. For the N or N8 parameter, Update only
uses ASCII if the old program library or input file
has ASCII data. The N8 parameter does not Fforce
ASCII automatically. When wusing the M and N
parameters, the character set is determined from
the library’s internal header.

By using the Update parameters, it is possible to
convert a file of display code data to ASCII, or
visa versa. This capability can be useful when
your operating system does not have a standard
utility to <change the <character set (such as
SCOPE). The file to be converted must be in a
legal input file format. An example of how a
display code to ASCII conversion can be done is
shown in the Update Control Statement Examples
subsection, which appears at the end of this
section,

60449900 D

The Update parameters are summarized in table &4-1
and are described in detail below.

A SEQUENTIAL-TO-RANDOM COPY

This parameter copies a sequential old program
library to a random new program library., No other
Update operations are performed; any I parameter is
ignored. The only other control statement
parameters that can be used with the A parameter
are those specifying files, L=0, R, *, /, and H.
An error results if the old program libhrary is not
sequential or the new program 1library is not
random. For SCOPE 2, the new program library
cannot be blocked.

o omitted

No copy is made.

The sequential old program library is
copied to a random new program library.

B RANDOM-TO-SEQUENTIAL COPY

This parameter copies a random old program library

to a sequential new program library. No other
Update operations are performed; any I parameter is

ignored. The only other control statement param-
eters that can be used with the B parameter are
those specifying files, L=0, R, *, and /. An ervor
results if the old program library is not in raundom
format.

® omitted

No copy is made.

The random old program library is copied to
a sequential new program library.

C COMPILE FILE NAME

This parameter specifies the name of the compile
file. The content of the compile file is
determined by the Update mode as shown in table 2-2
in section 2. The default character set is display
code.
e omitted or C or C6 or C8

Decks are written to the file named COMPILE.
® C=1fn or C6=1fn or C8=1fn

Decks are written to file named 1fn.

e C=PUNCH D DATA WIDTH ON COMPILE FILE
Decks are writtem to file named PUNCH. The This parameter specifies how many columns are to be
D and 8 parameters are implied. used for data on the COMPILE file. Data width does
not include sequencing information.
° C= @ onitted
Compile file suppressed. 72 columns of data to be used.

The C parameter is ignored if K is also specified.

80 columns of data to be used.

TABLE 4-~1 SUMMARY OF UPDATE CONTROL STATEMENT PARAMETERS

Parameteff Function
A Copies a sequential old program library to a new random program library.
B Copies a random old program library to a new sequential old program library.
C Specifies the name of the compile file.
D Defines the compile file line image width, excluding Update sequence information.
E Removes from the directory previously purged identifiers and purge identifiers that exist
simply as directory entries.
F Selects full Update mode.
G Specifies the name of the pullmod file.
H Overrides the old program library character set.
I Specifies the name of the primary input files.
K Writes decks on compile file in order specified on COMPILE directives.
L Selects listable output file‘contents.
M Merges specified program library with an old program library.
N Specifies the name of the new program library file.
0 Specifies the name of the listable output file; content is determined by L parameter.
P Specifies the names of the old program library and secondary old program libraries.
Q Selects quick update mode.
R Specifies the particular files to rewind.
S Specifies the name of the source file; content includes common decks and is determined by
mode.
T Same as S, but omits common decks.
U Does not terminate execution if fatal error occurs.
W Specifies the sequential new program library file.
X Specifies the compressed format for the compile file.
8 Defines the compile file line image width including Update sequence information.
* Redefines the master control character for directives.
/ Redefines the control character for comments.
TParameters ¢, G, I, X, M, N, 0, P, 8, and T can be appended with either 6 (for display code) or 8
(for ASCIL).

42

60449900 D

1f specified, the WIDTH directive overrides the D
parameter,

E EDIT OLD PROGRAM LIBRARY

This parameter specifies that the old program
library is to be edited. During editing, the
directory and deck list are rearranged to reflect
the actual order of decks on the program library;
all previously purged identifiers are removed.
Identifiers that exist simply as entries in the
directory and have no lines associated with them
are purged. Any lines other than YANK, SELYANK,
YANKDECK, or DEFINE that exist in the YANK$$$ deck
are also purged.

Two edit runs are required to edit the library
completely. The first edit run removes purged
identifiers and flags unused identifiers as
purged. The second edit run deletes the unused
identifiers from the directory.

[} omitted

No editing is done.

The program library is edited.

The E parameter can only be used when the EDITKEY
installation option has been assembled for Update.

F FULL UPDATE MODE

This parameter specifies full Update mode.
° omitted

Normal selective Update mode, as long as Q
is not specified.

Full Update mode.

"G PULLMOD FILE NAME

This parameter specifies the name of the pullmod
file. The default character set is display code.
The G parameter can only be used when the PMODKEY
installation option has been assembled for Update.

° omitted
Output from PULIMOD directives is appended
to the source file (S parameter).

e G=1fn or Gb=1fn or G8=lfn
Output from PULIMOD directives is written

on file named 1lfn. The listable output
file (O parameter) cannot be specified.

H CHARACTER SET CHANGE

This parameter allows the user to override the
character set type specification in the old program
library.

60449900 F

] omitted or H

Update treats the old ©program library
character set as the character set
indicated in the old program library.

° H=3

Update treats the old program library as a
63-character set program library regardless
of the character set specified in the old
program library.

Update treats the old program library as a
64-character set program library regardless
of the character set specified in the old
program library.

| INPUT STREAM FILE NAME

This parameter specifies the name of the primary
input file. If the digit 6 or 8 is not specified
(I or I=1fn), Update determines the input file
character set by examining the first line image.
Direct input from terminals, permitted only on NOS
and NOS/BE, defaults to the display code character
set unless I8 is specified on the UPDATE control
statement. All auxiliary input files must be in
the same character set as the primary input file.
Input lines are read and stored up to 256 char-
acters in length. No special parameter is nec—
essary to use long lines. Lines exceeding 256
characters are truncated and an informative message
is issued. ’

° omitted or I or 16 or I8

Directives and text are on the file named
INPUT.

° I=1fn or 16=1fn or 18=lfn

Directives and text are on file named 1fn.

K COMPILE FILE SEQUENCE

This parameter specifies that decks are to be
written to the compile file in the order in which
the deck names are encountered on COMPILE
directives. If a deck name is mentioned more than
once, its last specification determines the deck”s
place within the compile file. The default
character set is display code (K6). This parameter
takes precedence over the C parameter. The K
parameter is ignored if both the K parameter and
the F parameter are specified.

° omitted
Location determined by C parameter.
o K or K6 or K8

Decks to be written to the file named
COMPILE in COMPILE directive sequence.

o K=1fn or K6=1fn or K8=l1lfn

Compile output decks to be written on file
named 1fn in COMPILE directive sequence.

L LISTABLE OUTPUT OPTIONS

This parameter specifies the content of the output
file.

° omitted

For a creation run, selects options A, 1,
and 2.

For a correction run, selects options A, 1,
2, 3, and 4.

For a copy run, selects options A and 1.

For an output file connected to a terminal,
selects option 1. :

° L=c...c

Each character in string c...c selects one
of the following options. Under NOS, up to
seven options can be specified. The
character 0 overrides any other options
specified and suppresses the entire listing.

A List known deck names and correction
set identifiers (deck names and
correction set identifiers must be on
the primary old program library to be
known), COMDECK directives that were
processed, known definitions (DEFINE
directive), and decks written to the
compile file.

F All options except O.
0 All listing is suppressed.

1 List lines in error and the associated
error messages. The flag *ERROR*
appears to the left and right of an
erroneous line image.

2 List all active Update directives
encountered either on the input file or
on the old program library. Those
directives encountered in input are
flagged with five asterisks to the left
unless the directive is abbreviated or
the line identifier is in short form.
In this case, the directive is flagged
with five slashes. If the directive
has been encountered on the old program
library, the name of the deck to which
this line belongs is printed in place
of the five asterisks or slashes.

3 Comment on each line that changed
status during current run. Comments
include the deck name, line image, line
identifier, and an indicator of action
taken for that line.

1 Line added.
A Inactive line reactivated.

D Active line deactivated.

P Line purged. If the 1line was
active, ACTIVE also appears.

SEQ Line resequenced.

4 List text lines encountered in the
input stream. Lines read as a result
of a READ directive are identified to
the right with the file name. Lines
inserted as a result of an ADDFILE
directive are listed only when option 4
is explicitly selected. Lines inserted
as a result of a COPY directive are
identified to the right by the word

copy.

Option 4 can be turned om by a LIST
directive and off by a NOLIST directive.

5 List all active compile file directives.

6 List number of active and inactive
lines by deck name and correction set
identifier.

7 List all active lines; identify to the
right with an A,

8 List all dinactive lines; identify to
the right with an L.

9 List correction history of all lines
selected by list options 5, 7, and 8.

List options 5 through 9 are provided for auditing
an old program library. These options are
available only when the AUDITKEY installation
option 1is assembled. Output is written to a
temporary file and appended to the listable output
file at the end of the Update run. When the F
parameter is selected, options 5 through 9 apply to
all decks on the old program library. If F is not
selected, options 5 through 9 apply to decks listed
on COMPILE directives only.

List options 3, 5, 6, 7, 8, and 9 do not apply to
creation runs and are ignored if specified.
However, list option 4 may be used to list creation
run iaput.

If the A or B parameter is specified, the only list
option honored is L=0.

If the old program library 1is sequential and F is
not selected, called common decks that precede the
decks that call them must be explicitly named on
COMPILE directives to be audited. A common deck is
audited automatically if it follows the deck that
calls it. If the old program library is random,
called common decks are audited automatically.

M MERGE PROGRAM LIBRARIES

This parameter merges two program libraries as one
new program library. The M parameter is ignored on
a creation run. The two program libraries must
have the same master control character. The
default character set is determined from the header.
° omitted

No merge file.

° M or M6 or M8

Program library to be merged with the old
program library is on file MERGE.

60449900 F

e M=1lfn

Program library to be merged with old
program library on file named 1fn.

N NEW PROGRAM LIBRARY FILE NAME

This parameter specifies the mname of the new

program library. The default character set is

ASCIT if the P, M, or I file uses ASCII.

] omitted
Suppress new program library generation if
correction run, otherwise write new program
library to file named NEWPL.

° N or N6 or N8

Write new program library to file mnamed
NEWPL.

° N=1fn or N6=1fn or N8=1fn

Write new program library to file named 1lfn.

O LISTABLE OUTPUT FILE NAME

This parameter specifies the name of the output
file. Output file content is determined by the L
parameter. The default character set is display
code.
e omitted or O or 06 or 08

Write output to file named OUTPUT.
e O0=1fn or 06=1fn or 08=lfn

Write output to file named 1lfn.

P OLD PROGRAM LIBRARY FILE NAME
This parameter specifies the name of the old
program library; it is dignored on a creation run.

The default character set is determined from the
header.

° omitted or P or P6 or P8

0ld program library resides on file named
OLDPL.,

° P=1fn

01d program library resides on file named
1fn.

e P=1fn/sl/s2/.../s7
01ld program library resides on file named
1fn. Secondary old program libraries
reside on files sl, s2,...,s7.

e P=/sl/s2/.../s7
01ld program library resides on file OLDPL.

Secondary old program libraries reside on
files sl, s2,...,s87.

60449900 F

Q QUICK UPDATE MODE

This parameter specifies quick Update mode. It
takes precedence when both F and Q are specified.

[omitted

When F is also omitted, normal selective
Update mode.

Quick mode.

Corrections other than ADDFILE that reference lines
in decks not specified on COMPILE directives are
not processed in quick mode and Update abnormally
terminates after prianting the unprocessed correc-—
tions.

In Q mode, using a random old program library, a
single correction set containing corrections to
both a DECK and a COMDECK might cause trouble if
the COMDECK 1logically precedes the DECK on the old
program library. No errors will be detected, but
if the same run 1is repeated with the N parameter
specified on the UPDATE control statement and/or
the old program library is sequential, the sequence
numbers assigned to the text lines in the
correction set will not be the same as they were in
the Q mode run. This situation cannot be prevented
without sacrificing the speed for which Q mode was
designed. The correct sequence numbers are those
assigned when N is specified or the old program
library is sequential.

R REWIND FILES

This parameter specifies files to be rewound before
and after an Update run.

° omitted
Rewind the old program 1library, the new

program library, the compile file, the
source file, and the pullmod file.

Do not rewind any files. The new program
library and the old program library are
positioned before the end-of-file mark.
e R=c...c

Each character in the string indicates a
file to be rewound. The characters also
apply to corresponding two—character
control statement options.

9 Compile

N New program library

P 0ld program library and merge library

S Source and pullmod

S SOURCE FILE NAME

This parameter specifies the name of the source
file. The content of the source file is determined
by the mode in which Update is operating, by the
decks named on COMPILE directives, and by the
format of the old program library in use (random or
sequential).

e omitted

Suppress source output file unless it is
selected by the T parameter.

@ S or S6 or S8

Source output file to be written on file
named SOURCE.

e S=1fn or S6=1fn or S8=1fn

Source output file to be written on file
named 1fn.

T OMIT COMMON DECKS FROM SOURCE FILE
This parameter specifies that common decks are to

be excluded from the source file. It takes
precedence over the S parameter.

e omitted

Suppress source file unless it is selected
by the S parameter.

e T or Té6 or T8

Source output to be written on file named
SOURCE, with common decks excluded.

e T=lfn or T6=1fn or T8=1fn

Source output to be written on file named
1fn, with common decks excluded.

U DEBUG HELP

The U parameter allows Update to proceed to pass 2
(correction phase) if errors are encountered in
pass 1 (read-input-stream phase). The user should
be aware that because of the method in which Update
works, pass 1 errors could conceivably cause the
flagging of pass 2 items which are not errors.

o omitted

Update execution terminates when a fatal
error is encountered.

Update execution 1is not terminated by a
fatal error.

W SEQUENTIAL NEW PROGRAM LIBRARY FORMAT

This parameter specifies that the new program
library is to have sequential format.

e omitted

New program library format is determined by
file residence as shown in table 2-3 in
section 2.

New program library is a sequential file.

X COMPRESSED COMPILE FILE

This parameter specifies that the compile file is
to be compressed.

@ omitted

Compile file is not written in compressed
format.

Compile file 1is written 1in compressed
format (appendix D).

8 LINE IMAGE WIDTH ON COMPILE FILE

This parameter specifies total line image width on
the compile file including sequencing information
(appendix D). :

Y omitted

Compile file output is composed of
90-column line images.

Compile file output is composed of
80~column line images.

If specified, the WIDTH directive overrides the 8
parameter.

* MASTER CONTROL CHARACTER

This parameter specifies the master control
character. If the character specified for a
correction run is not the same as the character
used when the old program library was created, the
old program library character is used.

Y omitted
The first character of each directive is *,
e *=c
The first character of each directive for
this Update run 1is <¢; ¢ can be any
character A through Z, 0 through 9, or + -

* / $ or =, (The $ character should be
specified as *=$$$5.)

60449900 D

e

AW

C C

/ COMMENT CONTROL CHARACTER

This parameter specifies the comment control
character.

e omitted

Comment control character is /.
e /=c

The comment control character is c¢; ¢ can
be any character A through Z, 0 through 9,
or + -~ * / § or =, (The $§ character should
be specified as /=$$$3.) Note, however,
that the character should not be changed to
one of the abbreviated forms of a directive
unless NOABBREV is in effect.

UPDATE CONTROL
STATEMENT EXAMPLES

The Update control statement
UPDATE (C=0,I=IN,L=F ,N=TEST2,P=TEST1,S,*=+)

selects the following options in addition to
default values for the omitted parameters:

e C=0
A compile file is not generated.

e I=IN
The input stream is on the file named IN.

° =F
A full output listing is generated.

e N=TEST2
A new program library named TEST2 is
generated,

e P=TEST1
The old program library is on the file
named TESTI.

e S
A source file is generated on file named
SOURCE.

e *=t

The master control character is +.

The Update control statement
UPDATE (P=0LDPL8,58,1,0,N6=NUPL6)
selects the following values:
o P=0LDPL8
Modify the program library named OLDPLS;

the program library is assumed to be in
ASCII.

60449900 D

e S8
Generates an ASCII source file named
SOURCE.,

. I
The input is in ASCIL or display code on
the file named INPUT. Update automatically
determines the character set of the input.
file.

e O
The output is in display code (the default)
on the file named OUTPUT.

o N6=NUPL6

Causes Update to generate a new program
library in display code from the old
program library in ASCII code on the file
named NUPL6.

The Update control statement
UPDATE(C=0,1=0,N8=NUPL8,S)

selects the following options:

@ N8=NUPL8

“ An 8-bit (ASCII) NEWPL is generated if an
ASCIT old program library is input,

© C=0

A compile file is not generated.

The 0 is an empty file; no corrections are
applied.

A source file in display code named SOURCE
is generated.
The Update control statement
UPDATE(A,N=RAN,P=SEQ)
causes Update to copy the sequential old program
library, SEQ, to a random new program library named
RAN. The L, O, R, *, and / parameters assume
their default values. No other parameters are
applicable when A is specified.
The Update control statement
UPDATE
selects the following default values:

e C=COMPILE

© G=SOURCE (correction run)

I=INPUT

L=A12 (creation run)
L=A1234 (correction run)
L=A1 (copy run)

N=NEWPL (creation run)
0=0UTPUT

R=CNPS

P=OLDPL (correction run)

=K

/=/

In addition, the following defaults apply:

4-8

The compile file has 90 columns with 72 columns
for data.

No editing is performed.

Update mode is normal selective.

The character set used is that specified in the
library header. However, if there is ASCII
data in INPUT, ASCII will be used in creating
NEWPL.

No merging is performed.

Execution is_terminated if a fatal error occurs.

New program library file format is determined
by file residence.

The compile file is not in compressed format.

The Update control statement

UPDATE (C8=C812,F,1=F64,L=1,N=0,0=0UT,S8=5812,U)

causes Update to convert display code data in file

F64 to ASCII data in file €812,

The statement l

selects the following options:

C8=C812

A compile file is generated in ASCII.

F
Full Update mode is used.
I=F64
The input stream is on the file named F64.
A *DECK directive must be the first line in
the file.
L=1
The output file will contain lines in error
and the associated error messages.
N=0
A new program library is not generated.
0=0UT
The output is written to the file named OUT.
$8=5812
An ASCII source file is generated on file
named S812.
U

The Update execution will not be terminated
by a fatal error.

60449900 F

EXAMPLES OF UPDATE RUNS S5

This section contains several examples of Update

I runs under NOS. The directives illustrated include
PURGE, YANK, ADDFILE, and PULLMOD. Examples also
show how to save or store a program library as a
permanent file under the various operating
systems. Also included in this section 1is an
example of a FORTRAN program maintained as a
program library.

LIBRARY FILE CREATION

Figure 5-1 shows an example of an Update creation
run in which several COMPASS and FORTRAN routines
become a program library. The UPDATE control
statement indicates a new library is to be created
with the name PL. Since no other parameters are
specified, Update uses default values.

job statement

UPDATE (N=PL)

] /EOR

*DECK COMGROUP
COMPASS program

*DECK COMGROUP1
COMPASS program

*WEOR

*DECK FORGROUP
FORTRAN program

*DECK FORGROUP1
FORTRAN program

[/€01

Figure 5-1. Update Creation Run

Since the first directive encountered is DECK,
Update recognizes a creation run and begins
l construction of a new program library. All liaes
following the first DECK directive, up until the
second DECK directive, are written as a deck with
B the name COMGROUP. The first line is assigned the
identifier COMGROUP.2, the next COMGROUP.3, and so
forth. (The DECK directive itself is also a part
of the library and has the identifier COMGROUP.1.)

B A new deck, with 1line identifiers in the form
COMGROUPl.n, ©begins when Update encounters the
second DECK directive. In this example
(figure 5~1), two COMPASS programs form the first
two decks; COMGROUP and COMGROUPLl; and two FORTRAN
programs make up the last two decks (FORGROUP and
FORGROUPL). At the end of the Update run, a
program library exists with four decks.

60449900 D

The compile file produced by the run in figure 5-1
contalns two system-logical records as a result of
the WEOR directive. All four decks are written to
the compile file. It has the default name of
COMPILE.

The example in figure 5-2 shows a creation run in
which directives are read from the alternate inmput
file REMTAPE. Update reads text and directives
from REMTAPE until the end of the system-logical
record (end-of-section for SCOPE 2) 1is encoun—
tered. Update then resumes reading from the main
input file, INPUT. The resulting new program
library contains decks A, B, C, and LOCAL.

A. Update Job Deck.

job statement

UPDATE(N)

/EOR

*READ REMTAPE

*DECK LOCAL
text of LOCAL

/EOI

B. Contents of REMTAPE

*DECK A
text of A

*DECK B
text of B

*DECK C
text of C

figure 5~2. Creation of Library
From Alternate Input File

The program library, NEWPL, created by the example
in figure 5-3 contains four decks; two of them are
common decks. The compile file that is produced by
default contains decks XA and XB in that order.
Deck XB is expanded by Update to contain common
deck D2 on the compile file.

ALTERNATIVE INPUT FILES

Text and directives do not have to be part of the
job deck. They can be in a file specified by the I
parameter of the UPDATE control statement. Tn
figure 5-4, Update creates a program library from
information contained in file Al. The library that
is produced contains three decks having lines
identified by their deck name and sequence number
as shown in figure 5-5.

job statement

UPDATE (N)

] /EOR
*COMDECK D1
text of D1
*COMDECK D2
text of D2
*DECK XA
text of XA
*DECK XB
text of XB
*CALL D2
] /EOT

Figure 5-3. Creation of Library

With Common Decks

A. Update Job Deck

job statement

UPDATE(I=A1,N)

E /E0T
B. Contents of A1

*COMDECK CSET
“ COMMON A,B,C
*DECK SET1
PROGRAM ZIP

STOP
END
*DECK SET2

A =B ~ SIN(O)
RETURN
END

c A DO-NOTHING JOB

SUBROUTINE JIM

Figure 5-4. 1Input File Not INPUT

*COMDECK CSET
COMMON A,B,C
*DECK SET1
PROGRAM ZIP
¢ A DO-NOTHING JOB
sTOP
END
*DECK SET2
SUBROUTINE JIM
A =B - SINC
RETURN
END

CSET.1
CSET.2
SET1.1
SET1.2
SET1.3
SET1.4
SET1.5
SET2.1
SET2.2
SET2.3

SET2.4 .

SET2.5

Figure 5-5. Program Library Contents

INSERTING, DELETING,
AND COPYING

The Update run illustrated in figure 5-6 modifies
the decks SET1 and SET2 of the program library
created by the run in figure 5-4. As a result of
the correction run, SETl appears in the compile
file as shown in figure 5-7.

job statement

UPDATE(N,F)

/EGR
*IDENT ADD1
*DELETE SET1.3,SET2.5
*CALL CSET

B=1.0

€=3.14159

CALL JIM
*COPY SET1,SET1.4,SET1.5
*COPY SET2,SET2.2
*CALL CSET
*COPY SETZ,SET2.3,S8ET2.5
/EOI

Figure 5-6. Modify Old Program Library

PROGRAM Z1IP SET1 2
COMMON A,B,C CSET 2
B=1.0 ADD1 2
€=3.14159 ADDT 3
CALL JIM ADDT1 4
STOP ADDT1 5
END ADDT 6
SUBROUTINE JIM ADD1 7
COMMON A,B,C CSET 2
A =B - SIN(C) ADDT 9
RETURN ADD1 10
END ADDT 11

Figure 5~7., Compile File Contents

Figure 5-8 shows the modification of an old program
library named FN and the production of an assembly
listing. The compile file that is read by COMPASS
contains deck XA after that deck was modified by
Update.

PURGING AND YANKING

The purge directives differ from the yank
directives in that yank operations are temporary;
lines yanked from the program Iibrary are tem-
porarily deactivated. The lines can be reactivated
by a subsequent yank of the yank directive that
deactivated the line images.

In contrast, any change made to a program library -
through a purge directive is permanent. A reversal
of a purge operation is possible only through the
reintroduction of the lines into the library as if
they had not previously existed.

60449900 D

CC

job statement

-

UPDATE(P=FN)

-

COMPASS (I=COMPILE)

TEOR

*IDENT CS1

*INSERT XA.1
Insertions

*DELETE XA.20,XA.23

/EQI

Figure 5-8., Correction Run

The YANK directive in figure 5-9 becomes the first
line on the new program library. The identifier
for this line is NEGATE.l. The effects of the YANK
can be nullified in future runs (consequently the
effects of the correction set GOTTOGO are restored)
by specifying the following:

#*IDENT RESTORE
*DELETE NEGATE.!l
or
*IDENT RESTORE
*YANK NEGATE
or
*PURGE NEGATE

job statement

UPDATE (P=L1B,N=NEWLIB)

/EOR
*IDENT NEGATE
*YANK GOTTOGO
/EOX

Figure 5-9. Use of YANK

If the correction set NEGATE contained other
corrections as well as the YANK, the YANK could be
permanently removed by specifying the following:

*SELPURGE YANK$$S.NEGATE
or it could be temporarily removed by specifying:-

*SELYANK YANK$$S.NEGATE

The Update run in figure 5-10 returns a program
library to a previous level. The program library
LIBAUG was modified periodically over a number of
months. LIBAUG is the most recent (August) version
of the program library. This run re—creates a

60449900 D

job statement

UPDATE (N=LIBHMAY,P=L1BAUG,C=0)

/EOR
#*PURGE JUNMOD1,*
/E01

Figure 5~10. Return to Previous Level

library modified only through May. The run purges
all modifications made after May (beginning with
JUNMOD! in the directory).

The run in figure 5-11 permanently removes deck BAD
from the library. LIB is the most recent program
library. NEWBAD is the new program library with
BAD purged. *PURDECK BAD operates so that any
lines having the identifier BAD but physically
located outside of the deck BAD are not purged.

job statement

UPDATE (P=L1IB,N=NEWBAD ,C=0)

/EOR
*PURDECK BAD
/€01

Figure 5-11. Use of PURDECK

As a means of comparing the effects of YANK,
SELYANK, and YANKDECK, consider the following:

e *YANK OLDMOD

This directive causes all effects of the
correction set OLDMOD on the entire library to
be nullified. Line images introduced by OLDMOD
are deactivated; line images deactivated by
OLDMOD are reactivated.

@ *SELYANK OLDDECK,.OLDMOD

This directive accomplishes the same effect as
the *YANK OLDMOD directive except its effect is
limited to line images within the deck OLDDECK.

e *YANKDECK OLDDECK

This directive affects all Lline images in
OLDDECK, without regard to which correction set
they belong.

The effects of the purge directives PURGE,
SELPURGE, and PURDECK work the same as the vyank

directives except the results are permanent.

5-3

SELECTIVE YANKING

The text stream in figure 5-12 illustrates the use
of the DO and DONT directives. The deck ZOTS had
contained lines introduced by the correction set
DART; a 1later correction set contained a YANK
directive that yanked correction set DART. The
user wishes to nullify a portion of the YANK
directive that affects the lines following Z0TS.19
through Z0TS.244; all other lines belonging to the
correction set DART are to remain yanked.
Inserting a DO at ZOTS.19 and a DONT at ZOTS.244
causes Update to rescind the YANK directive while
writing the deck ZOTS to the compile file.

*IDENT REST
*INSERT Z0TS.19
*D0 DART
*INSERT Z0TS.244
*DONT DART

Figure 5~12. Use of DO and DONT

SELECTIVE WRITING TO
COMRPILE FILE

During the correction phase Update processes the
following directive:

*DEFINE ABC

It is automatically placed in the YANK$$S deck
(*INSERT is not needed). PROG2, a deck to be

written on the compile file, contains the sequence
shown in figure 5-13.

*DECK PROG2

«IF DEF,ABC

*ENDIF

Figure 5-13. Sequence of Deck

Since ABC is defined, all active lines between the
IF and ENDIF pair are written as part of PROG2.
Removing the DEFINE from the YANK$8S deck would
cause these text lines to be skipped.

figure 5-14 has wmutually
exclusive requirements depending on the avail-
ability of correction set IDC. If IDC is known,
the first 15 active lines after the first IF are
written to the compile file. If IDC is not known,
the lines following the second IF through the ENDIF
are written to the compile file.

The dinput stream in

5-4

*DECK DECKA

*IF IDENT,IDC,15
*IF - IDENT,IDC

active text lines
*ENDIF

Figure 5-14. Use of IF and ENDIF

illustrated in
an IF-controlled

Nesting of IF directives 1is
figure 5-15. The deck ROCK has
sequence containing a second IF-controlled
sequence. The text following the first IF is
written if PEBBLE is known (on the old program
library); the text following the second IF is
written if both PEBBLE and STONE are known. The
ENDIF terminates both IF-controlled sequences.

*DECK ROCK

*IF IDENT,PEBBLE

*IF IDENT,STONE

*ENDIF

Figure 5~15. Nested IF Directives

ADDITION OF DECKS

A new program library, NEWPL, is constructed from
the old program library, OLDPL, with the addition
of one new common deck and two new decks. The new
common deck, DIA, is the £first deck after the
YANKS$$S deck; the new deck XC follows deck SX; and
the new deck SYSTEXT is the last deck on the new
program library. No compile file is produced. All
three of the ADDFILEs in figure 5-16 are to be read
from the main input file INPUT. The ADDFILEs in
figure 5-17 are to be read from the Update input
file FNAME. In both these cases, the input file
need not be specified but the two separators must
be included (either space and comma or two
commas) . Each of the ADDFILE directives in
figure 5-18 causes Update to read from a separate
file that is not the main input file. Common deck
Dl1A and its text are on FILEA; deck SYSTEXT and its
text are on FILEB; deck XC and its text are on
FILEC,

PULLMOD OPTION

The program library created by the example in
figure 5~4 (Input File Not INPUT) has been altered
by the correction rum in figure 5-19. As a con-
sequence of the run, the deck SETl contains the
lines shown in figure 5-20.

60449900 D

job statement job statement

UPDATE (N, C=0) UPDATE(N,C=0)

/EOR . /EOR i
*ADDFILE INPUT,YANKS$S or *ADDFILE,,YANK$$$ *ADDFILE FILEA,YANKS$$S
*COMDECK D1A *ADDFILE FILEB

. *ADDFILE FILEC,XB

. /EOI

*ADDFILE INPUT or *ADDFILE

*DECK SYSTEXT Figure 5-18. ADDFILE Input on
. Secondary Input Files
*ADDFILE INPUT,XB or *ADDFILE,,XB job statement

*DECK XC ’

UPDATE (N=PL2)
/EOI *

. . JEOR i
5-16.
Figure 5-16. ADDFILE Input on File INPUT *IDENT PMEX

*DELETE SET1.3

¢ THIS IS FOR PULLMOD EXAMPLE
*#COMPILE SET1
/EOI

A. Update Run
job statement

Figure 5-19. Correction Run
for PULLMOD Example

UPDATE (N, C=0,I=FNAME)

* *DECK SET1
* PROGRAM ZIP
;EOI 4 THIS IS FOR PULLMOD EXAMPLE
STOP
B. Contents of file FNAME END

*ADDFILE FNAME,YANK$$$ or *ADDFILE,,YANK$$S
*COMDECK D1A

Figure 5-20. File Contents After
Correction Run

-

*ADDFILE FNAME or *ADDFILE .

*DECK SYSTEXT job statement
*ADDFILE FNAME,XB or *ADDFILE,_XB UPDATE (G=PMFILE ,P=PL2)
*DECK XC /EOR

. *PULLMOD PMEX

. /EOI

Figure 5~21. Pull Modifications
Figure 5-17. ADDFILE Input on File FNAME

*IDENT PMEX

+*DELETE SET1.3,SET1.3

The Update run in figure 5-21 recreates the I THIS IS FOR PULLMOD EXAMPLE
correction set that changed SET1l; the file PMFILE
contains the recreated correction set shown in

figure 5-22. Figure 5-22. Recreated Correction Run

60449900 D 5-5

PROGRAM LIBRARY AS A
PERMANENT FILE

I The job deck in figure 5-23 illustrates the
creation and saving of a program library as a
permanent file under NOS/BE and SCOPE 2; the deck
in figure 5-24 saves a program library as an in-
direct access file under NOS. See the appropriate
operating system reference manual for additional
details.

job statement

accounting statements
REQUEST (PL ,*PF)
UPDATE (N=PL W ,L=1234)
CATALOG(PL ,PLIB,1D=JONES)
/EOR

*DECK ONE

/EOI

Figure 5-23. Permanent File Under
NOS/BE or SCOPE 2

job statement
accounting statements
UPDATE (N=PL ,W,L=1234)
SAVE(PL=UPLIB)

/EOR

*DECK ONE

/EOI

Figure 5-24. Permanent File Under NOS

SAMPLE FORTRAN PROGRAM

This set of Update examples illustrates how Update
can be used for maintaining a FORTRAN program in
program library format. The FORTRAN program
calculates the area of a triangle obtaining the
base and height from the data record.

The job in figure 5-25 places the FORTRAN program
and subroutine as a single deck (ONE) on the new
program library (NEWPL) and on the compile file
(COMPILE). Following Update execution, FIN5 is
called to compile the program; the source is on the
COMPILE file. LGO calls for execution of the
compiled program. This program does not execute
because of an error in the SUBROUTINE statement.
The name of the subroutine should be MSG, not MSA.

Examination of update output from the creation job
reveals that the erroneous SUBROUTINE statement has
line identifier ONE.20. The job in figure 5-26
corrects the error and generates a new program
library.

5-6

job statement

UPDATE (N, F)
FTNS (I=COMPILE)
LGO.
/EOR
*DECK ONE
PROGRAM ONE
PRINT 5
5 FORMAT (1H1)
10 READ (*,100,END=120)BASE HEIGHT

100 FORMAT (BZ,2F10.2,I1
IF (BASE.LE.0) GO TO 105
IF (HEIGHT.LE.0) 60 TO 105
60 TO 106
105 CALL MSG
106 AREA = .5 * BASE * HEIGHT
PRINT 110, BASE,HEIGHT,AREA
110 FORMAT (///,'BASE=',F20.5,'HEIGHT="
¢ ,F18.5,'AREA=',F20.5)
WRITE (1) AREA
60 T0 10
120 sToP
END
SUBROUTINE MSA
PRINT 400
400 FORMAT (///,'FOLLOWING INPUT DATA
€ NEGATIVE OR ZERO')

RETURN
END
/EOR
data
/EOI

Figure 5~25. FORTRAN Program Library - 1

job statement

ATTACH (OLDPL=MYLIB)
UPDATE (N, F)

FTN5 (I=COMPILE)
L60.

/EOR

*IDENT MOD1

*DELETE ONE.20
SUBROUTINE MSG

/EOR

data

/E0I

Figure 5-26. Correction of
SUBROUTINE Statement

60449900 D

)

The job in figure 5-27 uses the same input as the
job in figure 5-25. However, the program in
figure 5-27 is divided into two decks, MSG and
ONE. Deck MSG is a common deck. A CALL directive
is inserted into deck ONE to assure that whenever
deck ONE is written on the compile file, MSG is
also written on the compile file.

job statement

UPDATE (N, F)
FTNS (I=COMPILE)
LGO.

-

JEOR
*COMDECK MSG
SUBROUTINE MSG
PRINT 400
400 FORMAT (///,'FOLLOWING INPUT DATA
€ NEGATIVE OR ZERO")
RETURN
END
*DECK ONE
PROGRAM ONE
PRINT 5
5 FORMAT (1H1)
10 READ (*,100,END=120)BASE HEIGHT
100 FORMAT (BZ,2F10.2,I1)
IF (BASE.LE.O0) GO TO 105
IF (HEIGHT.LE.0) GO TO 105
60 TO 106
105 CALL MG
106 AREA = .5 * BASE * HEIGHT
PRINT 110,BASE,HEIGHT ,AREA
110 FORMAT (///,'BASE=',F20.5,'HEIGHT="
¢ ,F18.5,'AREA=',F20.5)
WRITE (1) AREA

GO TO 10
120 STOP
END
/EOR
data
/EOI

Figure 5-27. FORTRAN Program Library - 2

60449900 D

The example in figure 5-28 adds a deck to the

library created in the
(figure 5-27).

previous

addition is temporary.

example
Since no new program library is
generated (N is omitted from Update call),

the .

job statement

-

ATTACH (OLDPL=MYLIB)
UPDATE.
FTN5(I=COMPILE)
LGO.

/EOR

*IDENT MOD2

*INSERT ONE.20

*DECK TWO
PROGRAM TWO
END

*CALL MSG

*DELETE MSG.3

400 FORMAT (///,'FOLLOWING INPUT DATA
c POSITIVE")

/EOR

data

/EQI

Figure 5-28. Add Deck to FORTRAN
Program Library

5-7

e

e’

i/
C G
g o’

CHARACTER SETS

This appendix describes the code and character sets
used by host computer operating system local batch
device drivers, magnetic tape drivers, and terminal
communication products. Some software products
assume that certain graphic or control characters
are associated with specific binary code values for
collating or syntax processing purposes. This
appendix does not describe those associations for
all products.

All references within this manual to the ASCII
character set or the ASCII code set refer to the
character set and code set defined in the American
National Standard Code for Information Interchange
(ASCII, ANSI Standard X3.4-1977). References in
this manual to the ASCII character set do not
necessarily apply to the ASCII code set.

CHARACTER SETS AND CODE SETS

A character set differs from a code set. A
character set is a set of graphic and/or control
characters. A code set is a set of codes used to
represent each character within a character set.
Characters exist outside the computer system and
communication network; codes are received, stored,
retrieved, and transmitted within the computer
system and network.

GRAPHIC AND CONTROL CHARACTERS

A graphic character can be displayed at a terminal
or printed by a line printer. Examples of graphic
characters are the characters A through Z, a blank,
and the digits 0 through 9. A control character
initiates, modifies, or stops a control operation.
An example of a control character is the backspace
character, which moves the terminal carriage or
cursor back one space. Although a control
character 1is not a graphic character, some ter-
minals can produce a graphic representation when
they receive a control character.

CODED AND BINARY CHARACTER DATA

Character <codes <can be interpreted as coded
character data or as binary character data. Coded
character data 1is converted from one code set
representation to another as it enters or leaves
the computer system; for example, data received
from a terminal or sent to a magnetic tape unit is
converted. Binary character data is not converted
as it enters or leaves the system. Character codes
are not converted when moved within the system; for
example, data transferred to or from mass storage
is not converted.

60449900 D

The distinction between coded character data and
binary character data is important when reading or
punching cards and when reading or writing magnetic
tape. Only coded character data can be properly
reproduced as characters on a line printer. Only
binary character data can properly represent
characters on a punched card when the data cannot
be stored as display code.

The distinction between binary character data and
characters represented by binary data (such as
peripheral equipment instruction codes) is also
important. Only such binary noncharacter data can
properly reproduce characters on a plotter.

FORMATTED AND UNFORMATTED
CHARACTER DATA

Character codes can be interpreted by a product as
formatted character data or as unformatted char-
acter data. Formatted data can be stored or
retrieved by a product in the form of the codes
described for coded character data in the remainder
of this appendix, or formatted data can be altered
to another form during storage or retrieval; for
example, 1 can be stored as a character code or as
an integer value. Treatment of unformatted data by
a product includes both coded character data and
binary character data as described in this appendix.

NETWORK OPERATING SYSTEMS

The Network Operating System (NOS) and the Network
Operating System/Batch Enviromment (NOS/BE) support
the following character sets:

e CDC graphic 64-character set
@ CDC graphic 63-character set
© ASCII graphic 64-character set
@ ASCII graphic 63—-character set
@ ASCII graphic 95-character set

In addition, NOS supports the ASCII 128~character
graphic and control set.

Each installation must select either a 64-character
set or a 63-character set. The differences between
the codes of a 63~character set and the codes of a
64~character set are described under Character Set
Anomalies. Any reference in this appendix to a
64~character set implies either a 63~ or 64~
character set unless otherwise stated.

A-1

To represent its six 1listed character sets in
central memory, NOS supports the following code
sets:

e 6-bit display code
@ 12-bit ASCII code (ASCII 8/12)

e 6/12~bit display code (ASCII 6/12)

Update only wutilizes ASCII 8/12 or display code
characters. No attempt to input ASCII 6/12 data
(on NOS) should be made. The ASCII 6/12 data must
first be converted to ASCII 8/12 data using the NOS
FCOPY control statement.

To represent 1its five listed character sets in
central memory, NOS/BE supports the following code
sets:

@ 6-~bit display code

] 12-bit ASCII code (ASCII 8/12)

Under both NOS and NOS/BE, the 6-bit display code
is a set of 6-bit codes from 00g to 77g.

Under both NOS and NOS/BE, the 12-bit ASCII code is
the ASCII 7-bit code (as defined by ANSI Standard
X3.4-1977) right—justified im a 12-bit byte.
Assuming that the bits are numbered from the right
starting with 0, bits O through 6 contain the ASCII
code, bits 7 through 10 contain zeros, and bit 11
distinguishes the 12-bit ASCII 00003 code from
the end-of-line byte. The 12-bit codes are 000lg
through 0177g and 4000g.

Under NOS, the 6/12~bit display code is a
combination of 6-bit codes and 12-bit codes. The
6-bit codes are 00g through 77g, excluding
7hg and 76g. (The interpretation of the 00g
and 63g codes is described under Character Set
Anomalies later in this appendix.) The 12-bit
codes begin with either 74g or 76g and are
followed by a 6-~bit code. Thus, 74g and 76g
are considered escape codes and are never used as
6~bit codes within the 6/12-bit display code set.
The 12-bit codes are 7401y, 7402g, 7404g,
7407g, and 760lg through 7677g. All other
12-bit codes (74xxg and 7600g) are undefined.

CHARACTER SET ANOMALIES

The operating system input/output software and some
products interpret two codes differently when the
installation selects a 63-character set rather than
a b4-character set. If an installation uses a
63—-character set, the colon graphic character is
always represented by a 63g code, display code
00g is undefined (it has no associated graphic or
punched card code), and the % graphic does not
exist.

@ A-2

However, under NOS, if the installation uses a
64—character set, output of a 7404g 6/12-bit
display code or a 00g display code produces a
colon. A colon can be input only as a 7404g
6/12-bit display code. The wuse of undefined
6/12-bit display codes in output files produces
unpredictable results and should be avoided.

Under NOS/BE, if the installation uses a
64~character set, output of a 00g display code
produces a colon. Display code 63g is the colon
when a 63-character set is used. The % graphic and
related card codes do not exist on the 63-character
set system and translations yield a blank (55g).

Under both NOS and NOS/BE, two consecutive 00g
codes can be confused with an end-of-line byte and
should be avoided.

CHARACTER SET TABLES

The character set tables A-1 and A-2 are designed
so that the user can find the character represented
by a code (such as in a dump) or find the code that
represents a character. To find the character
represented by a code, the user looks up the code
in the column listing the appropriate code set and
then finds the character on that line in the column
listing the appropriate character set. To find the
code that represents a character, the user looks up
the character and then finds the code on the same
line in the appropriate column.

Conversational Terminal Users

Table A-1 shows the character sets and code sets
available to an Interactive Facility (IAF) user at
an ASCII code terminal using an ASCII character
set. (Under NOS wusing network product software,
certain Terminal Interface Program commands require
specification of an ASCII code.)

IAF Usage

When in normal time—sharing mode (specified by the
IAF NORMAL command), IAF assumes the ASCII graphic
64~character set is used and translates all input
and output to or from display code. When in ASCII
time—-sharing mode (specified by the IAF ASCII
command), IAF assumes the ASCII 128-character set
is used and translates all input and output to or
from 6/12-bit display code.

Update does not support 6/12-bit display code. The
IAF user can convert a 6/12-bit code file to a
12-bit ASCII code file using the NOS FCOPY control
statement. The resulting 12~bit ASCII file can be
routed to a 1line printer but cannot be output
through IAF.

60449900 D

TABLE A-1. CONVERSATIONAL TERMINAL CHARACTER SETS

ASCII ASCII Octal Octal Octal ASCII ASCII Octal Octal Octal
Y Graphic Character 6-Bit | 6/12-Bit | 12-Bit Graphic Character 6-Bit 6/12-Bit | 12-Bit
}g (64-Char- (128~Char- |Display| Display | ASCII (64~Char~ (128-Char- Display | Display | ASCII
7 acter Set) acter Set) Code Codel Code acter Set)| acter Set) Code Code! Code
: colon'’ goft ~ circumflex 7402 0136
A A o1 01 0101 : colon't 740417 | 0072
B B 02 02 0102 ' grave accent 7407 0140
c c 03 03 0103 a 7601 0141
D D 04 04 0104 b 7602 0142
E E 05 05 0105 ¢ 7603 0143
fF F 06 06 0106 d 7604 0144
G G 07 o7 0107 e 7605 0145
H H 10 10 0110 f 76U6 /0146
I 1 11 11 01N g 7607 || 1047
J 3 12 12 0112 h 7610 | -0150
K K 13 13 0113 i 7611 0151
L L 14 14 0114 j 7612 0152
M M 15 15 0115 k 7613 0153
N N 16 16 0116 L 7614 0154
0 4] 17 17 0117 m 7615 0155
P P 20 20 0120 n 7616 0156
Q Q 21 21 0121 o 7617 0157
R R 22 22 0122 p 7620 0160
T S N 23 23 0123 q 7621 0161
? T T 24 24 0124 r 7622 0162
U u 25 25 0125 s 7623 0163
v v 26 26 0126 t 7624 0164
W W 27 27 0127 u 7625 0165
' X X 30 30 0130 v 7626 0166
Y Y 31 31 0131 W 7627 0167
z z 32 32 0132 x 7630 0170
0 0 33 33 0060 y 7631 0171
1 1 34 34 0061 z 7632 0172
2 2 35 35 0062 { left brace 7633 0173
3 3 36 36 0063 | vert. line 7634 0174
4 4 37 37 0064 } right brace 7635 0175
N 5 5 40 40 0065 ~ tilde 7636 0176
™ 6 6 41 41 0066 NUL 7640 4000
E 7 7 42 42 0067 SOH 7641 0001
A 8 8 43 43 0070 STX 7642 0002
9 9 [(2 0071 ETX 7643 0003
+ plus + plus 45 45 0053 EOT 7644 0004
- minus - minus 46 46 0055 ENQ 7645 0005
* asterisk * asterisk 47 47 0052 ACK 7646 0006
/ slash / slash 50 50 0057 BEL 7647 0007
(L. paren. (L. paren. 51 51 0050 BS 7650 0010
) r. paren, |) r. paren. | 52 52 0051 HT 7651 0011
$ dollar $ dollar 53 53 0044 LF 7652 0012
= equal to = equal to 54 54 0075 vT 7653 0013
space space 55 55 0040 FF 7654 0014
, comma , comma 56 56 0054 CR 7655 0015
'} . period . period 57 57 0056] 7656 0016
y # number # number 60 60 0043 SI 7657 0017
s I L. bracket | [L. bracket| 61 61 0133 DEL 7637 0177
J r. bracket | 1 r. bracket] 62 62 0135 DLE 7660 0020
% percem:TT % percent” 6317 63!t 0045 pC1 7661 0021
" quote " quote 64 64 0042 pc2 7662 0022
_ underline | _underline | 65 65 0137 DC3 7663 0023
! exclam. t exclam. 66 66 0041 bDeh 7664 0024
& ampersand | & ampersand &7 67 0046 NAK 7665 0025
' apostrophe | ' apostrophe} 70 70 0047 SYN 7666 0026
? question ? question 71 71 0077 ETB 7667 0027
< less than | < less than | 72 72 0074 CAN 7670 0030
> grtr. than| > grtr. than] 73 73 0076 EM 7671 0031
® coml. at 74 suB 7672 0032
\ rev. slantj \ rev. slant] 75 75 0134 - ESC 7673 0033
~ circumflex 76 FS ~ 7674 0034
; semicolon | ; semicolon | 77 4 0073 GS 7675 0035
3 coml. at 7401 0100 RS 7676 0036
us 7677 0037
TGeneraLty available only on NOS, or through BASIC on NOS/BE.
Hrhe interpretation of this character or code depends on its context. Refer to Character Set Anomalies in
the text.

M; 60449900 D .

TABLE A-2.

LOCAL BATCH DEVICE CHARACTER SETS

cbe ASCII ASCII Octal Octal Octal Card Keypunch Code
Graphic Graphic Graphic 6-Bit 6/12-Bit 12-Bit
(64—Character (64-Character (95-Character Display Display ASCII 026 029
Set) Set) Set) Code Code' Code
: colon'l : colonf? oott 8-2 8-2
A A A 0 01 01, 12-1 12-1
B B B a2 02 0102 12-2 12-2
C c c 03 03 0103 12-3 12-3
D D D 04 04 0104 12-4 12-4
E E E 05 05 0105 12-5 12-5
F F F 06 06 0106 12-6 12-6
G G G 07 07 0107 12-7 12~7
H H H 10 10 0110 12-8 12-8
I I 1 11 1 0111 12-9 12-9
J J J 12 12 0112 11-1 11-1
K K K 13 13 0113 11-2 11-2
L L L 14 14 0114 11-3 11-3
M M M 15 15 0115 11-4 11-4
N N N 16 16 0116 11-5 11-5
0 0] 17 17 0117 11-6 11-6
P P P 20 20 0120 11-7 11-7
Q Q Q 21 21 0121 11-8 11-8
R R R 22 22 0122 11-9 11-9
S S S 23 23 0123 0-2 0-2
T T T 24 24 0124 0-3 0-3
U u u 25 25 0125 0-4 04
\Y v v 26 26 0126 0-5 0-5
W W W 27 27 0127 0-6 0-6
X X X 30 30 0130 0-7 0-7
Y Y Y 3 31 0131 0-8 0-8
z z z 32 32 0132 0-9 0~9
0 0 0 33 33 0060 0 0
1 1 1 34 34 0061 1 1
2 2 2 35 35 0062 2 2
3 3 3 36 36 0063 3 3
4 4 4 37 37 0064 4 4
5 5 5 40 40 0065 5 5
6 6 6 41 41 0066 6 6
7 7 7 42 42 0067 7 7
8 8 8 43 43 0070 8 8
9 9 9 44 44 0071 9 9
+ plus + plus + plus 45 45 0053 12 12-8-6
- minus - minus - minus 46 46 0055 1" 1
* asterisk * asterisk * asterisk 47 47 0052 11-8-4 1-8-4
/ slash / slash / slash 50 50 0057 0-1 0-1
(left paren. (left paren. (left paren. 51 51 0050 0-8~-4 12-8-5
)} right paren.) right paren.) right paren. 52 52 0051 12-8-4 11-8-5
$ dollar $ dollar $ dollar 53 53 0044 11-8-3 11-8-3
= equal to = equal to = equal to 54 54 0075 8-3 8-6
space space space 55 55 0040 no punch | no punch
, comma , comma , comma 56 56 0054 0-8-3 0-8-3
. period . period . period 57 57 0056 12-8-3 12-8-3
= equivalence # number # number 60 60 0043 0-8-6 8-3
L left bracket [Left bracket [L. bracket 61 61 0133 8~7 12-8-2
or 12-0
J right bracket 3 right bracket 1 r. bracket 62 62 0135 0-8-2 11-8-2
or 11-0t!
% percenti? % percent!! % percentt? 63 63 0045 8~6 0-8-4
60449900 D

@ A-4

TABLE A-2. LOCAL BATCH DEVICE CHARACTER SETS (Contd)
[4:10 ASCII ASCII Octal Octal Octal Card Keypunch Code
Graphic Graphic Graphic 6-Bit 6/12-Bit 12-Bit
(64=-Character (64-Character (95-Character Display Display ASCII 026 029
Set) Set) Set) Code Code! Code
not equal ' quote " quote b4 &4 0042 8-4 8~7
> concat. __underline __underline 65 65 0137 0~-8-5 0-8-5
v logical OR ! exclamation ! exclamation 66 66 0041 11-0 12-8~7
A logical AND & ampersand & ampersand 67 67 0046 0-8-7 12
4 superscript ' apostrophe ' apostrophe 70 70 0047 11-8-5 8-5
{ subscript ? question ? question 71 71 0077 11-8-6 0-8-7
< Less than < Lless than < Lless than 72 72 0074 12-0 12-8-4
> greater than > greater than > greater than 73 73 0076 11-8-7 0-8-6
< Lless/equal & commercial at 74 8-5 8-4
> greater/equal \ reverse slant \ rev. slant 75 75 0134 12-8-5 0-8-2
— logical NOT ~ circumflex 76 12-8-6 11-8-7
; semicolon ; semicolon ; semicolon 77 77 0073 12-8-7 11-8-6
@ coml. at 7401 0100
A circumflex 7402 0136
: colonft 740411 0072
* grave accent 7407 0140
a 7601 0141
b 7602 0142
¢ 7603 0143
d 7604 0144
e 7605 0145
f 7606 0146
g 7607 0147
h 7610 0150
i 7611 0151
j 7612 0152
k 7613 0153
L 7614 0154
m 7615 0155
n 7616 0156
o 7617 0157
p 7620 0160
q 7621 0161
r 7622 0162
s 7623 0163
t 7624 0164
u 7625 0165
v 7626 0166
W 7627 0167
X 7630 0170
y 7631 0171
z 7632 0172
{ Left brace 7633 0173
| vert. Lline 7634 0174
¥ right brace 7635 0175
~ tilde 7636 0176

Htavailable for input only, on NOS.

TGeneraLLy available only on NOS, or through BASIC on NOS/BE.

Mrhe interpretation of this character or code depends on its context.
in the text.

Refer to Character Set Anomalies

60449900 D

IAF supports both character mode and transparent
mode transmissions through the network. These
transmission modes are described under Network
Access Method Terminal Transmission Code Sets in
the Remote Batch Facility (RBF) reference manual.
IAF treats character mode transmissions as coded
character data; IAF converts these transmissions to
or from either 6~bit or 6/12-bit display code. IAF
treats transparent mode transmissions as binary
character data; transparent mode communication
between IAF and ASCII terminals using any parity
setting occurs in the 12-bit ASCII code shown in
table A-l.

Local Batch Users

Table A-2 1lists the CDC graphic 64-character set,
the ASCII graphic 64-character set, and the ASCII
graphic 95-character set. This table also lists
the code sets and card keypunch codes (026 and 029)
that represent the characters.

The 64-character sets use display code as their
code set; the 95-character set uses 12-bit ASCII

code. The 95-character set is composed of all the
characters in the ASCII 128-character set that can

be printed at a line printer (refer to Line Printer
Output). Only 12-bit ASCII code files can be
printed using the ASCII graphic 95-character set.
To print a 6/12-bit display code file (usually
created in IAF ASCII mode), the user must convert
the file to 12-bit ASCII code. To do this, the NOS
FCOPY control statement must be issued. The
95-character set is represented by the 12-bit ASCII
codes 00408 through 0176g.

Line Printer OQutput

The batch character set printed depends on the
print train used on the line printer to which the
file is sent. The following are the print trains
corresponding to each of the batch character sets:

Print
Character Set Train
CDC graphic 64—character set 596-1
ASCII graphic 64-character set 596-5

ASCII graphic 95-character set 596~6

The characters of the default 596~1 print train are
listed in the table A-2 column labeled CDC Graphic
(64-Character); the 596~5 print train characters
are listed in the table A-2 column labeled ASCII
Graphic (64-Character); and the 596-6 print train
characters are listed in the table A-2 column
labeled ASCII Graphic (95-Character).

If a transmission error occurs during the printing
of a line, NOS prints the line again. The CDC
graphic print train prints a concatenation
symbol (r+) in the first printable column of a
line containing errors. The ASCII print trains
print an underline instead of the concatenation
symbol.

If an unprintable character exists in a line (that
is, a 12-bit ASCII code outside of the range
0040g through 0l76g), the number sign (#)
appears in the first printable column of a print
line and a space replaces the unprintable character.

Punched Card Input and Output

Under NOS, coded character data is exchanged with
local batch card readers or card punches according
to the translations shown in table A-2, As
indicated in the table, additional card keypunch
codes are available for input of the ASCII and CDC
characters] and [. The 95-character set cannot be
read or punched as coded character data.

Depending on an installation or deadstart option,
NOS assumes an input deck has been punched either
in 026 or 029 keypunch code (regardless of the
character set in wuse). The alternate Kkeypunch
codes can be specified by a 26 or 29 punched in
columns 79 and 80 of any 6/7/9 card or 7/8/9 card.
The specified code translation remains in effect
throughout the "~ job unless it is reset by
specification of the alternate code translation on
a subsequent 6/7/9 card or 7/8/9 card.

NOS keypunch code translation can also be changed
by a card containing a 5/7/9 punch in column l. A
blank (no punch) in column 2 indicates 026
conversion mode; a 9 punch in column 2 indicates
029 conversion mode. The conversion change remains
in effect until another change card is encountered
or the job ends.

The 5/7/9 card also allows literal input when
4/5/6/7/8/9 is punched in column 2. Literal input
can be used to read 80-column binary character data
within a punched card deck of coded character data.

Literal cards are stored with each column in a
i2-bit byte (a row 12 punch is represented by a 1
in bit 11, row 1l by bit 10, row O by bit 9, and
rows 1 through 9 by bits 8 through O of the byte),
16 central memory words per card. Literal input
cards are read wuntil a card identical to the
previous 5/7/9 card (4/5/6/7/8/9 in column 2) is
read. The next card can specify a new conversion
mode.

60449900 F

v

KWJ’

Remote Baich Users

When card decks are read from remote batch devices,
the ability to select alternate keypunch code
translations depends upon the remote terminal
equipment.

NOS Usage

Remote batch terminal line printer, punched card,
and plotter character set support is described
under Input Deck Structure in the Remote Batch
Facility reference manual. RBF supports only
character mode transmission to and from consoles
through the network. Character mode is described
under Network Access Method Terminal Transmission
Code Sets in the Remote Batch Facility reference
manual.

NOS/BE Usage

Remote batch terminal line printer and punched card
character set support is described in the INTERCOM
reference manual.

Magnetic Tape Users

Coded character data to be copied from mass storage
to magnetic tape is assumed to be represented in
display code. NOS converts the data to external
BCD code when writing a coded 7-track tape and to
ASCII or EBCDIC code (as specified on the tape
assignment statement) when writing a coded 9-track
tape.

Because only 63 characters can be represented in
7-track even parity, one of the 64 display codes is
lost in conversion to and from external BCD code.
Figure A~1 shows the differences in conversion that
depend on which character set (63 or 64) the system
uses. The ASCII character for the specified
character code is shown in parentheses. The output
arrow shows how the display code changes when it is
written on tape in external BCD. The input arrow
shows how the external BCD code changes when the
tape is read and converted to display code.

60449900 D

63-Character Set

External BCD Display Code

Display Code

00 16 (%) 0o

33 (0 Output 12 (@ Input 33
63 () et PN (1) =33 ()

64~Character Set

Display Code External BCD Display Code
00 (2 12 33 (D
33 (D Output 12) Input 33

63 (%) = 16 %) =63 (W

Figure A-1. Magnetic Tape Code Conversions

Tables A-3 and A-4 show the character set
conversions for nine-track tapes. Table A~3 lists
the conversions to and from 7-bit ASCII character
code and 6~bit display code. Table A-4 lists the
conversions between 8-bit EBCDIC character code and
6~bit display code. Table A~5 shows the character
set conversions Dbetween 6-~bit external BCD and
6-bit display code for seven-track tapes.

If a lowercase ASCII or EBCDIC code is read from a
9-track coded tape, it is converted to its
uppercase 6-bit display code equivalent. To read
and write lowercase ASCII or EBCDIC characters, the
user must assign the tape in binary mode and then
convert the binary character data.

During binary character data transfers to or from
9-track magnetic tape, the 7-bit ASCII codes shown
in table A-3 are read or written unchanged; the
8-bit hexadecimal EBCDIC codes shown in table A-4
also can be read or written unchanged. ASCII and
EBCDIC codes cannot be read or written to 7-track
magnetic tape as binary character data.

Tables A-6 and A~-7 list the magnetic tape codes and
their punch code equivalents on IBM host computers.

Two CDC utility products, FORM (not supported on
SCOPE 2) and the 8-Bit Subroutines, can be used to
convert to and from EBCDIC data. Table A-7
contains the octal wvalues of each EBCDIC code
right-justified in a 12-bit byte with zero fill.
This 12-bit EBCDIC code can also be produced using
FORM and the 8-Bit Subroutines.

A-7 @

TABLE A-3.

ASCII 9-TRACK CODED TAPE CONVERSION

ASCII ASCII
Display Display

Code Character and CodetTt Code Character and CodelTt
Conversion' Code Conversion Conversion Code Conversion
Code Char Code Char ASCII Code Code Char Code Char ASCII Code
(Hex) (Hex) Char (0ctal) (Hex) (Hex) Char (0ctal)
20 space 00 NUL space 55 40 2 60 2 74
21 ! 70 ¥ ! 66 41 A 61 a A o
22 " 02 STX " 64 42 B 62 b B 0z
23 # 03 ETX # 60 43 c 63 c ¢ 03
24 $ 04 EOT $ 53 (s D 64 d D 04
25 % 05 ENQ % 63 45 E 65 e E 05
25 % 05 ENQ space 55 46 F 66 f F 06
26 & 06 ACK & 67 47 G 67 g G 07
27 * o7 BEL ' 70 48 H 68 h H 10
28 (08 BS (51 49 1 69 i 1 11
29) 09 HT) 52 4A J 6A j J 12
2A * 0A LF * 47 48 K 6B k K 13
28 + 0B vT + 45 4C L 6C L L 14
2¢ , oc FF , 56 4D " 6D m M 15
2D - 0p CR - 46 4E N 6E n N 16
2E . OE SO . 57 4F 0 6F o 0 17
2F / OF SI / 50 50 P 70 p P 20
30 0 10 DLE 0 33 51 Q 71 q Q 21
3 1 1 DC1 1 34 52 R 72 r R 22
32 2 12 pe2 2 35 53 S 73 s S 23
33 3 13 DC3 3 36 54 T 74 t T 24
34 4 14 DCh4 4 37 55 U 75 u u 25
35 5 15 NAK 5 40 56 v 76 v v 26
36 6 16 SYN 6 41 57 W 77 W W 27
37 7 17 ETB 7 42 58 X 78 X X 30
38 8 18 CAN 8 43 59 Y 79 y Y k)l
39 9 19 EM 9 44 5A z 7A z z 32
3A : 1A sus : 00 58 L iC FS C 61
Display code 00 is undefined at sites using the 5¢C \ 7¢C | \ 75
63~-character set. 5D L 01 SOH] 62
3A : 1A sus H 63 SE PN 7€ - A 76
3B H 18 ESC H 77 5F _ 7F DEL _ 65
3C < 78 { < 72
3p = 10 GS = 54
3E > 1€ RS > 73
3F ? 1F us ? 71

twhen these characters are copied from or to a tape, the characters remain the same and the code changes

from/to ASCII to/from display code.

™ These characters do not exist in display code. When the characters are copied from a tape, each ASCII

character is changed to an alternate display code character. The corresponding codes are also changed.

Example: When the system copies a lowercase a, 6144, from tape, it writes an uppercase A, O1g.
TTTA display code space always transtates to an ASCII space.

@ A-8

60449900 D

g

2

TABLE A-4.

EBCDIC 9-TRACK CODED TAPE CONVERSION

EBCDIC EBCDIC

Code Character and D;sglaﬁ Code Character and D;sgtgﬁ
tonversion’ Code Conversion oae Conversion! Code Conversion!! ode
Code Char Code Char ASCII Code Code Char Code Char ASCII Code
(Hex) (Hex) Char (Octal) (Hex) (Hex) Char (Octald
40 space 00 NUL space 55 cé F 86 f F 06
4A ¢ 1C IFS L 61 c7 G 87 g G 07
48 . OE] . 57 c8 H 88 h H 10
4C < co { < 72 c9 1 89 i I 1
4D (16 BS (51 D1 J 91 i J 12
4E + 0B vT + 45 Y K 92 k K 13
4F | pli] 3 ! 66 D3 L 93 L L 14
50 & 2E ACK & 67 D4 M 94 m] 15
SA ! o1 SOH] 62 D5 N 95 n N 16
58 3 37 EOT $ 53 Dé 0 96 o 0 17
5C * 25 LF * &7 D7 P 97 p P 20
5D) 05 HT) 52 D8 o} 98 q Q 21
5E H 27 ESC ; 77 D9 R 99 r R 22
S5F - Al - / 76 EQ \ 6A | \ 75
60 - [0]2] CR - 46 E2 S A2 s S 23
61 ' OF SI ! 50 E3 T A3 t T 24
68 P oc FF , 56 E4 U AL u U 25
6C % 2b ENQ % 63 ES v A5 v v 26
6C % 2D ENQ space 55 ES W Ab W Y 27
6D o7 DEL 65 E7 X AT X X 30
6E by 1E IRS > 73 E8 Y A8 y Y 31
6F ? 1F IUs ? 71 EQ z A9 z Z 32
7A : 3F sus : 00 FO 0 10 DLE 0 33
Display code 00 is undefined at sites using the F1 1 11 DC1 1 34
63-character set. F2 2 12 DC2 2 35
7A : 3F SuB : 63 F3 3 13 ™ 3 36
78 # 03 ETX # 60 Féb 4 3C DC4 4 37
7¢C 2 79 \ a T4 F5 5 3D NAK 5 40
70 ' 2F BEL ! 70 F6 6 32 SYN 6 41
7E = 1D 1GS = 54 F7 7 26 ETB 7 42
7F " 02 STX " 64 F8 8 18 CAN 8 43
c1 A 81 a A 01 F9 9 19 EM 9 44
c2 8 82 b 8 02
c3 c 83 ¢ C 03
C4 D 84 d D 04
c5 E 85 e E 05

TALL EBCDIC codes not listed translate to display code 553 (space). A display code space always

translates to an EBCDIC space.

TTThese characters do not exist in display code. When the characters are copied from a tape, each EBCDIC
character is changed to an alternate display code character. The corresponding codes are also changed.
Example: When the system copies a lowercase a, 8144, from tape, it writes an uppercase A, Olg.

TTTHhen these characters are copied from or to a tape, the characters remain the same (except EBCDIC codes
4tA1g, 4F16, 5Aq4, and 5F44) and the code changes from/to EBCDIC to/from display code.

60449900

D

A-9 @

TABLE A-5. 7-TRACK CODED TAPE CONVERSIONS

External ASCII Octal Display External ASCII Octal Display
BCD Character Code BCD Character Code
o1 1 34 40 - 46
02 2 35 41 J 12
03 3 36 42 K 13
04 4 37 43 L 14
05 5 40 44 M 15
06 6 41 45 N 16
07 7 42 46 0 17
10 8 43 47 P 20
1" 9 44 50 Q 21
12t 0 33 51 R 22
13 = 54 52 ' 66
14 " 64 53 $ 53
15] 74 54 * 47
161 % 63 55 : 70
17 C 61 56 ? 71
20 space 55 57 > 73
21 / 50 60 + 45
22 S 23 61 A 01
23 T 24 62 B 02
24 u 25 63 C 03
25 v 26 64 D 04
26 W 27 65 E 05
27 X 30 66 F 06
30 Y 31 67 G 07
31 b4 32 70 H 10
32] 62 71 1 1
33 , 56 72 < 72
34 (51 73 . 57
35 _ 65 74) 52
36 # 60 75 \ 75
37 & 67 76 PN 76

77 ; 77

Tas explained in the text of this appendix, conversion of these codes depends on whether the tape is

being read or written.

® A-10

60449900 D

A-l1 ©

(rRUNGPEX AR} 9pal) 1G0YH 3w t @ YD D008
I _
ﬁéucaoii..||1\\ _qfliz:aa:uﬁawq LIELER]
44 [:1¢] I3} 36 5¢ (s 13 8t N3 to 1396 ©0[a9 T 90049 |19 IAEL sni | 4o 1S 4
(-8-6-0-41-T1 | £E-8-6-11-TL (-0~ 1L-Z1 98- 11-Zt | G-6-0~11-Zt | L-6-11-ZL L~6-0-11 €-8-6-11 | (-6-Z1 | 9-11-Zt | 5-8-0 [9-11 | ¢-8~ -0 -8-6-11 L-8-6-21t a1 [S T
03 130 o 0 ¢ / sn 1S
34 va 98 a6 L 95 3E YO WWS{Iv ~ 166 vii4s |SON[39 <|8v 3t sy | 30 oS a
9-8-6-0~11-Z1 | Z-8-6-11-21 9-0-t1-Zt G-g-11-21 | »6-0-11-21 | 9-6-41-C1 9-8-6 7-8-6-Z1 | 1-0-11 | S~11-ZL {811 [S-1L | 9-8-0] €£-8-21 9-8-6-11 9-8-6-71 P ot it
~ u ~ N < : SH 0S
[«F] Er) 58 26 €L 55 v S3H | 60 34 | 00 {lve wivs (|vaw |3 -|o09 - jat $91 | Q0 k) @
6-8-6-0~11-ZL | L-86-0-T1 S-0-L1-Tt -8-11-21 | £-6-0-11-2t | G-6-11-T1 o611 1-8-6-7t o.:A v-ii-Zt N,m.," [9-8 i 5-8-6-11 $-8-6-21 1 t 011
w w . . $O 1]
04 Ele) A | v8 896 z 5 v0 44 | 02 ve | |t6 tlo3 viea|{ov >89 BED S41 |00 44 o)
v-8-6-0-11-Z1 | 9-8-6-0-Z1 [A €-B-11-21 | Z-6-0-11-21 | 6 11~ v-6-Z1 ¥-8-6-0 P1-Z0 [€-11-21 | 27870 |€-1t | p-8-TL £€-8-0 v-8-6-11 -B8-6-C1 P 00 L
H ! \ 1 > ’ S4 44
[:2} as %] v6 V3 £G ag €no | 8z zno | 00 \[z6 Alvwr #|zawjas |3 + ez 253 | 80 1A @
£-g-6-0-1t-2t | §$-8-6-0-Zt €-0-11-21 Z-8-11-21 | 4-6-0-11-21 | €-6-11-Z1 £-8-6 €8 6-0 0-Ciy| z-11-zu |zeer |- |9t | 9-8-21 t-6-0| €-8-6-Ct " 11 01
) A) M : ’ 253 1A
v4 (WA] D0 JT) 8 06 ot 5 ve ve wsiev 7|16 163 z|1ar|ve o] .]4€ ans | sz 473)
2-8-6-0-11-ZL | +8-6-0-Z1 -0~ 14-21 1-g= 1=zt O-1t-Zt | T76-11- 28 z-6-6 z-8-6 0] 6-0-11 | t~11-21 60 | t-1t z-8] 8-t (-8-6 $-6-0 o1 ot ot
k4 ! 4 r . ans 41
43 a9 18 38 69 15 6€ 62 gy Al 68 1183 A |60 163 6] QS t]6l w3 | %0 1M
1-8-6-0-11 | E£-8-6-0~Z1 t-0-11-2t L-8-0-2t 1-8-0 | 1-6-11-21L 1-8-6 1-876-0| 8-0-11] 6-0-21 8-0 | 6-21 6 5-8-11 1-8-6-11 G-6-C1 6 t o0 i
.A [A [6 { W3 AH
33 D 08 38 89 6v 8t 8z tv x| B8 u|{(3 X|8H|8s 8}av [RED nNYD | 8t sg
9-8-6-0~1t | Z-8-6-0-Z1 | 1-8-0-11-T1 9-8-0-21 8-6-0~11 1-8-2t 8-6 8-6-0| (-0-t1] 8-0-2L -0 | 8-zt a G-8-7t 8-6-11 9-6-11 8 000 1
x) X H a8 } NYO S8
a3 48 4v as (9 8y 80 39| L1 Tjov M|y 6|93 Mm|OO|td (|t .9z 913 | 42 138
§~8-6-0-t1| L-8-0-11-Tt L8011 $-8-0-21 (~6-0~11| 8-6-0-C1 8-6-21 -6-t1] 9-0-11| (~0-21 9-0 | (-2t 1 5-8 9-6-0 1-8-60 I t Lt 1o
” 6 M 9 11 . 813 1ag
23 H| 38 v 08 99 (v 9€ on| g0 DVvjsv a9 i{s3 Aj904194 9]o0s w |ze NAS | 3¢ MOV
8-€-0-t1] 9-8-0-11-Z1 9-8-0- 11t 8-0-Z1 9-6-0-t1 | (-6-0-Z1 9-6 9-6-21 | S-0-ti | 9-0-Zt 5-0 | 9-zt 9 zi -6 9-8-6-0 9 0ot 10
A] A 4 9 k] NAS pie)"]
LE] a8 av 88 s9 9v St SH | St IN|jbY niGg alv¥3 Nn|503 |64 6|09 % | ot MYNTQAZ ON3
£-8-6-0-11 | 5-8-0-11-21 G-8-0- 1t €-8-0-21 6-6-0~1t | 9-6-0-Z1 -6 S-6-1L | v-0-it | $-0-ZL v-0 | §-21 S v-8-0 5-8-6 $-8-6-0 [t 0t 0
n a n 3 [+ % AN ON3
v3 08 ov v8 ¥9 1% £ Nd | vZ dAB | €V v[vg ple3 L|voavd v]ses s |ot v20Q | (€ 103
2-8-6-0~11 | ¥8-0~11-T1 801t z-8-0-{t t-6-0-t1] G-6-0-Zt -6 v-6-0| €-0-tt| v-0-21 €0 | -2t 4 €81t v-8-6 L-6 [2 00t 0
1 P 1 [¢] 14 $ ¥OQ 103
40 a8 av 08 €9 [i € v s1eg >1z3 sleooled ejae g ler wi feo X413
(~8-6-11-Z1 | €~8~0~11~Z4 £-8-0-11 t-8-0-ZL €-6-0-11 | v-6-0-Z1 £-6 €60} z-0~11| £-0-Z1 z-0 |e-z1 € £-8 €-6-11 £-6-21 € t 1+ 00
H E) S e} £ # £0Q X13
3a vg 2% 8L 9 12 vi 20| 2 sS4 | 66 1{z8 a|60 W |08 |Zd4 T 4L L la zoa | zo X1S
9-B-6~11~Z4 | Z-B-0-11-Tt 2-8-0-tL | B-6-0-11~C1 2-6-0~1t | £-6-0-Tt T-8-6-11 z2-6-0 | 6-LL-Zt | z-0-Tt| 611 |z-Tt z (-8 T-6- 11 z-6-Tt z 01 00
3 q 5]] z . 200 X 1S
aa 68 ov 173 65 4 (1 1z sos {8 blig elga DoV |14 1] av T 120 | 10 HOS
S-8-6-11-Z1 6-0-t1-Zt -8-0-tL | 67071121 t-8-1t | Z-6-0-2t 1-6 1-6-0 | 8-41-2t | 1-0-2t | 8-t | t~z1 ' L-8-Z4 1-6- 11 1-6-Z1 3 t 000
b e 0 v i i 100 HOS
oa 88 46 9¢ 85 1% oE [i74 saj{¢6 961 (0 4|ote|os ojOor gs|oOL 310 | 00 NN
v-8-6-11-Z1 g0t i-Z1 (-8-1L-ZL] 9-6-0-11-T8 8-6-11-21 | 1-6-0~Z1 | 1-8-6-0-11-Z1 | t-8-6-0~11 | L~11-CL 1-8| (-t | v-8 0 | yound-ou | {~8~6-11-Z1 | 1~8~6-0-T1 i} 0000
q . d ® Y ds 310 NN
{4) (3 i)] (a) v} 6 s . s s v . z . o o iq Zq Eq 9
-1 v X 4 t ot
103
i 1] 1 1] 1 0 1 0 1 0 i (1] t 1] 3] Sq
3 t [} [+ t t 0 0 t L 1] 0 L L [} 1] 9q
t t i i 1] 1] 0 (1] t t t L [[0 0 Lyg
L 1 t 1 v t 1 3 [[0 0 [} 0 [} [} 8q

NOIIVISNVYL OIADHgE ANV SHQ0D (¥VD (QHHONOd
(I10SV) HONVHOWHUINI NOILVWYOINI ¥0J HA0D QYVANVLS TTVNOILVN NVOIYEWY °*9-V T14VL

604499060 D

(Irwidspexay) apoy 110SY~—#-a5

_ gt _
apoy pren i

_JATulB.uEm:o 110Sv

i i RPeeyD) 91083 anN3oat
43 03 | 64 €d a3 (3 ta 0a 62 44 . |42 ¢3S ~ hiz 1 fvt ans | L0 138 |41 sn | 40 1S e
L-8-6-0~-11-TL | £-8-6-0~1% | (-8-6-11-ZL | L-8-6-0-21 |{~B~0-11-Zt [£-8-0-11 [(-B-11-21 |(-8-0-Z1 -8 1-9-0 L-8-11 (-8-Tt L-8-6 L-8-6-0 (-8-6-11 | {-B-6-Z1 # [
. ¢ - i 8ns 138 [l 13
34 84 2] 03 93 9a 49 80 [ES < j8c ez + |36 90 MoV |31 sd | 30 0s I 1)
9-8-6-0-11-21 | 9-8-6-0-11 | 9-8-6~11~ZL o.m‘m.olmh 9-8-0-t1-Zt | 9-8-0~1t |9-8-11-ZL |9-8-0~T1 9-8 9-8-0 9-8-11 9-8-Z1 9-8-6 9-8-6-0 9-8-6-11 | 9-B-6-ZL 3 ot
- < : + HoV St 0s
a4 3 [¥] a3 53 50 E) 5] « . |ds 62 |8z) [st XYN [50 ON3 |Gl S5 1 Q0 ¥ e
S-8-6-0-11-Z1 | 5~8~6-0- 11 | 5-8~6~11~T1 | S-8-6-0-Z1 |S-B~0-11-Z [S-8-0-11 |S-B~41-Z) |G-B-0-ZL 6-8 5-8-0 S-8-1t 58~ $-8-6 $-8-6-0 5-8-6-11 | 5-8-6-2t || Lo Lt
. t) NN ON3 S91)
o4 94 03 v3 ¥3 va ao 9 ov ® |ST % |vZ S > I v00 |28 ot s4 | o0 EEN P
¥-8-6-0-11-Zi | ¥-8-6-0-11 | -8~6-11~T1 | 4~B-6-0-Z1 | v~8~0-11-Z1 | b-8-0-11 | o-8-11-2L | v~8-0-Z1 -8 -8-0 8-l r-8-Z1 -8-6 -8-6-0 r-8-6-11 | t-8~6-Z1 5 (oo
Y I ® 13 . > [Ble] Sdi 44
84 [F] 43 63 £3 £a 20 50 £z # |0z C e $ {3z " |86 a8 48 40 Ny
€-8-6-0-11-Z1 | €-8-6-0~11 | €-8-6-11-T1 | E~8-6~0~Z1 [E-B-0-1i~Tt [£-B-0~11 | E-B-11-Z} |E-B-0-TL £-8 €-8-0 £-8-11 €-8-Z1 £€-8-6 £-8-6-0 €-8~6~11 | £-8-6-Zi q LLot
H ' £€no zno 1no 1A
vd [33 83 z3 za [5) [&) ve oL 1 jos {]8s 1 |ve v8 z6 3g o1
T-8-6-0-11-T8 | Z-8-6-0-11 | 2-8-6-11-Tt | T-B-6-0-ZL | Z-8~0~ 112l | Z-8-0-11 | Z-B-11-2) |Z-8-0-21 -8 ti-zt z-g-11 z-8~Zt z-8-6 2-8-6~0 z-g-6-11| z-s6-zi | 'O Jo 101
(WA | : ! 1 » WS 22 was ff Y
6 6] vs zles Y | 6y BEE] Vi 7l 1 | 69 +fos v |68 18 8 66 68 61 w3 | a8
6 6-0 6-11 6-Z1 6-0-t1-zt [6-0-il 6112t 6-0-Z1 1-8 1-8-0 L-g-11 1-8-2t 1~8-6 t-8-6-0 1-8-6-11 | 1-8-6-Zl || 6 toot
6 2 Y 1 z 1 ! N w3 ERL:
8¢ 8| 69 Afts D8y H 103 6L At b |89 ulzo 88 08 A4 86 88 81 NYD | 16
g 8-0 [: 21 8-zt | 8-0-i1-Zt 8-0~1it 8-11-Z1 8-0-ZL | 8-6-0~11-Zt |8-6-0~tL |8-6-11-Zt | 8-6-0~Z1 8-6 8-6-0 8-6-11 8-6-Z1 8 0001
8 A 0 H A b u) NVD 39
L L] 8s X | 0§ d]iy 9 | 30 8L x {0t d]9 6] 1o a 4v 9v $0 103 | a1 053 | (8 4 730
L -0 -1t A =01 -2t =011 =112 £-0-2Y § £-6-0~t1-T8 | (-6-0-t1 | L-B-Li-ZL | 1-6-0~21 -6 1-6-0 1-€-1t L-6-TL L tt1o
L X] 9 x g 6 103 053 a1 hELS)
ot 9| (s M| v 09y 3|3a I m | 49 o |99 [N) o8 av Sv % 0 913 |80 55 | 98
9 90 8-1t 9Tt 9-0-1t-Z4 | 9-0-1t 9-Lt-Z4 9-0-ZL { 9-6-0-11~Z1 | 9-6-0-L1 | 9-6-11-Z} | 8-6-0-Z1 9-6 9-6-0 9611 9-6-C1 9 0110
9 M [s] 4 ~ ° 3 an 813 58 21
[s| 99 INEL T E 3| aa 9L DES v |sg alan 58 av (4 56 vo 47 |58 60 1H
[§-0 §-11 [} 50~ 1-Zt $-0~11 S-4t=Zi | §-0-Z1 | §-6-0~11-Zt | 6-6-0-11 | G 6-11-ZL | G- 6-0-ZL -6 $-6-0 5-6-11 $-6-Z1 [1010
[A N 3 A u a 5] 47 N 1H
ve S nlav TR o [oa SL n a9 w | vg » | ag va oV 33 v6 v as 06
v -0 it [r-0-11~Z1L -0-11 r-ti-zt -0-ZL | v-6-0~L1-Z) | v~6~0~11 | #-6-11-Z1 | +-6-0-21 -6 -6~0 6-11 r-6-21 v 0010
v n W a n w » Nd dA8 S3y 4d
€€ el vs L] op ey 2|80 vL 1109 1{c9 af a8 €8 av v €6 £8 £l €20 €0 x13
€ £-0 E-11 €Tt | E£-0-11-ZL] £-0-11 £-11-Z4 €-0-21 | £-6-0~11-Z1 | €-6-0-11 | £-6-11-Z1 | £-6-0-CT1 €6 €-6-0 £-6-11 €-6-2t || € tt00
€ 1 7 o) ' [o : W1 X13
e z| es s| ar x| zv 8| va £ s {89 % {z9 af os z8 vy v 91 NAS | z8 4 00| 20 xus
z -0 -1t T-ZL] T-0-11-Tt z-0-1t -1zt T-0-Z1 | 2-6-0-11-Z4 | Z-6-0-11 [Z-6~11-2t | Z-6-0-T1 -6 z-6-0 611 z-6-2L || T 0100
H H b] s k] q NAS Sd fele] X1S
[t L] 46 123 el v | 60 3 ~ | vo t]1g el gg 42 /| 6v ov 16 18 1 120G | 10 HOS
t t=6-0~11 I -zt t-0-t 12t 1-0-1t 1-11-zt 1-0-z1 | 1-6-0-1t-21 1-0 | 1-6~11-Z1 | 1-6-0-Z1 1-6 1-6-0 1-6~11 1-6-21 1 tooo
N r v ~ 1 ° ! S0S 120 HOS
[+ BES \| a¢ {l 8 3| 8a 1a V2 =) ve az - 19t wloz ds {06 [i:] o 370| 00 INN
0 z-8-0 o-it O-Z1y| t-8-0-11-Zt | t-8-0-t1 | t-8-11-Z) | 1-8-0-Z1 o-tt~zl I ZL | wund ou | {-g-6-0-t1-2t | 1-8-6-0-14 | 1-B~6-11-21 [1-8-6-0-Z4 § O 0000
0 \ {) ~ 5 dJs sg 310 1y
aNZIL9S Y
.d“ _uv .wv .w. ﬁﬁ, *d. 6 e B ° s v e z N o o
18t s1e
1 [) 1 [1) t 0 i [} i) L) T) 3
L] 0 o 1 v 0 0 t 3 o 0 3 3 0 0 Zsiie
t i 1 1 0 0 0 [L t 1 L [0 0 [1
i 3 i ! t 1 T t 0 0 0 [[4 0 0 0
NOIIWVISNVAL I1DSV OGNV SHC0D d¥v) JIHDONNJL
(01@09d) FAOD FONVHONAINI TYWIOHA QHACO AWYNIE AEANTIXHE °/~V FI4VI

60449900 D

® A-12

)

DIAGNOSTICS B

Diagnostic messages can either appear in the dayfile
or are intermixed with Update output in the output
file. In addition to detecting errors, Update
detects overlapping corrections when the EXTOVLP
installation option has been assembled.

DIAGNOSTIC MESSAGES

All diagnostic messages that can be issued during an
Update run are listed in alphabetic order in
table B-1l. One of the following codes is included
for each diagnostie:

Type Meaning

I An informative message; processing con-
tinues.

N A nonfatal error; processing continues.

F A fatal error; processing is terminated.

OVERLAPPING CORRECTIONS

Update can detect four overlapping correction
situations. When any of these types are detected,
Update prints the line in error with the words
TP.n OVLP appended on the far right of this 1line.
Type n is one of the following:

Iype Meaning
1 Two or more modifications are made to one

line by a single correction set.

2 A modification attempts to activate an
already active line.

3 A modification attempts to deactivate an
already inactive line.

4 A line is inserted after a line which is
inactive on the old program library and
is inactive on the new program library.

The listing of overlap lines is controlled by 1list
option 3.

Detection of an overlap does not necessarily indi-
cate a user error. Overlap messages are advisory,
and they ©point to conditions in which the
probability of error is greater than normal. If any
overlap condition is encountered, a dayfile message
is printed.

Type TP.2 and TP.3 are detected by comparing
existing correction history bytes with those to be
added. Complex operations involving YANK and PURGE
might generate these overlap messages even though no
overlap occurs.

TABLE B-1. DIAGNOSTICS
Message Type Significance Action
A OPTION INVALID WITH RANDOM F The old program library is Correct the error.

OLDPL OR SEQUENTIAL NEWPL

**%*ADDFILE DIRECTIVE INVALID ON F
REMOTE FILE#%%

***ADDFILE FIRST LINE MUST BE F
DECK OR COMDECK###*

*%*ALL. YANK, SELYANK, YANKDECK, I
AND CALL DIRECTIVES AFFECTED
HAVE BEEN CHANGED#®#*#*

B OPTION INVALID WITH SEQUENTIAL E

60449900 E

not sequential or the new
program library is not ran-—
dom or is not on a random
device for a sequential-
to-random copy.

The ADDFILE directive cannot
be used in the file specified
by a READ directive.

The first line on the file
specified by the ADDFILE
directive is not a DECK or
COMDECK directive.

If Update changes any identi- None.
fiers during a merge, it also
changes the corresponding
YANK, SELYANK, YANKDECK, and
CALL directives.

The old program library is not
OLDPL random for a random-to-
sequential copy.

Remove the ADDFILE directive
from the file specified by the
READ directive.

Correct the error.

Do not specify B on the control
statement.

TABLE B-1.

DIAGNOSTICS (Contd)

Message

Type

Significance

Action

*%%*BAD ORDER ON YANK
DIRECTIVE#*%*

%%*LINE NUMBER ZERO OR INVALID
CHARACTER IN NUMERIC FIELD*#%

%*%%DIRECTIVE INVALID OR
MISSING***

*%%COPY TO EXTERNAL FILE NOT
ALLOWED WHEN READING ALTERNATE
INPUT UNIT#*#%%

COPYING INPUT TO TEMPORARY
NEWPL
COPYING OLDPL TO A RANDOM FILE

CREATING NEW PROGRAM LIBRARY

#%%*DECK NAME ON ABOVE LINE NOT
LAST DECLARED DECK**%

#%*DECK SPECIFIED ON MOVE OR
COPY DIRECTIVE NOT ON OLDPL,
DIRECTIVE WILL BE IGNORED**#*

DECK STRUCTURE CHANGED

#%%D0O/DONT IDENT idname IS NOT
YANKED/YANKED NULL DO/DONT##*#%

*%*DUPLICATE DECK dname NEWPL
ILLEGAL#*#**

#%*%*DUPLICATE FILE NAME OF file,
JOB ABORTED#*%*%*

***DUPLICATE IDENT CHANGED TO
ident¥**

F/N

Identifiers separated by a
period on the YANK directive
are in the wrong order.

Sequence number field on a
correction directive is
erroneous.

Update detected a format error
on a directive, deleted a
directive that was unrecogniz-
able, or detected an illegal
file name. Illegal operations
such as INSERT prior to an
IDENT could also have been
attempted.

No copy is made.

A sequential new program
library was requested on a
creation run.

The old program library is
being copied to a random file.

Indicates that a new program
library is being created.

When a DECLARE directive is in
effect, only line images
belonging to decks specified
can be modified or referenced.

The specified deck will not be
moved or copied.

A deck has been moved or
deleted.

A DO directive, to negate the
effect of a YANK, references
an identifier that has been
yanked; or a DONT directive,
to restore a YANK, references
an identifier that was already
yanked.

Update encountered an active
DECK or COMDECK directive

that duplicates a previous
directive. This condition is
fatal if a new program library
is being created; nonfatal if
a new program library is not
being created.

The same file name has been
assigned to two Update files.

Update changed a duplicate
identifier name to a unique
one.

Correct the order of the
identifiers.

Correct the sequence number.

Correct the error.

Correct the error.

None.

Rone.

None.

Add appropriate DECLARE direc-
tives or remove directives
that reference non-declared
decks.

Correct the error.

None.

None.

Change one of the deck names.

Change one of the file names.

None.

60449900 E

o

TABLE B-1. DIAGNOSTICS (Contd)

PROCESSED

60449900 E

processed because dependency
condition (K or U parameter on
the IDENT directive) has not
been met.

Message Type Significance Action
%%*DUPLICATE IDENT NAME#®#% F During a merge run, Update Change one of the identifiers.
encountered a duplicate
identifier name that it could
not make unique.
#**DUPLICATE IDENT NAME IN F The name of a correction set Change the name of the
ADDF ILE ###* to be added as a result of an correction set.
ADDFILE directive duplicates
a correction set name on the
old program library.
DUPLICATE SECONDARY OLDPL I Two secondary old program Correct the error or ignore.
IGNORED libraries have the same name.
**%*%*ERROR. NO PERMISSION TO F Both MODIFY and EXTEND Attach file with correct
WRITE NEWPL#*%*%* permission must be present access permissions. The
to overwrite a permanent tape requested or labeled for
(direct access) file, or a output must have a write ring.
write ring must be in place (Refer to the NOS, NOS/BE,
to store the information. or SCOPE reference manuals.)
%%*ERROR**#*NOT ALL MODS WERE F All changes indicated in the Make sure that names specified
PROCESSED##% input stream were not pro- on correction directives corre—
cessed. spond to identifiers on the old
program library (or on the
COMPILE directive if in quick
mode) .,
*%*ERROR. WIDTH EXCEEDS 256 N Total of statement width plus Correct *WIDTH statement.
CHARACTERS##®%* ident field width is greater
than 256 characters on *WIDTH
statement.
#*#%*%*FILENAME OF file IS TOO LONG, F A file name exceeds seven Correct the file name.
UPDATE ABORTED#*#*% characters.
*%*FILENAME ON ABOVE DIRECTIVE F A file name exceeds seven Correct the file name.
GREATER THAN SEVEN characters.
CHARACTERS##*#*
FILE NAME ON UPDATE CONTROL F A file name on the UPDATE Correct the file name.
STATEMENT GR 7 CHARACTERS control statement is greater
than seven characters.
G AND O FILES CANNOT HAVE SAME F The G and 0O control statement Change one of the names.
FILENAME options specify the same file
name.
GARBAGE IN OLDPL HEADER, F Invalid data was found in the Rerun job/re-create program
UPDATE ABORTED random index. library. 1If the problem still
exists, follow site~defined
procedures for reporting soft-
ware errors or operational
problems.
*%% IDENT DIRECTIVE MISSING, i/F If no new program library is Add IDENT directive if new
NO NEWPL REQUESTED, DEFAULT generated, then a correction program library is to be
IDENTIFIER OF .NO.ID. USED*#% set need not be introduced by generated.
an IDENT directive. The iden~-
tifier .NO.ID. is used.
IDENT xxxxx WILL NOT BE I Named correction set not None.

B-3

TABLE B-~1. DIAGNOSTICS (Contd)
Message Type Significance Action
#%**IDENT LONGER THAN NINE F An identifier can only have up Correct the identifier.
CHARACTERS*#** to nine characters.
%% IDENTIFIERS SEPARATED BY F The specified identifiers are Switch the identifiers.
PERIOD IN WRONG ORDER#*#%* not in the correct order.
*%*TLLEGAL CONTROL STATEMENT F ADDFILE insertions cannot con- Remove the correction
IN ADDFILE*%% tain correction directives. directives.
IMPROPER MASTER CHARACTER N The character specified on the Use the same master control
CHANGED TO char * control statement parameter character as on the old program
is not the same as the master library.
control character on the old
program library.
INSUFFICIENT FIELD LENGTH, F The table manager ran out of Allocate more field length.
UPDATE ABORT room for internal tables.
#%%TT MAY EXIST IN A DECK F An identifier references a Correct the error.
NOT MENTIONED ON A COMPILE line in a deck not specified
DIRECTIVE#*#* on a COMPILE directive (only
if in quick mode).
#%*INVALID NUMERIC FIELD#%% F The directive does not contain Correct the directive.
required numeric field.
%%*LENGTH ERROR ON OLDPL. F Line length on old program Rerun job. If problem still
UNUSABLE OLDPL OR HARDWARE library is greater than the exists, then recreate the pro-
ERROR*#%* maximum allowed or is less gram library.
than one.
*%**LISTED BELOW ARE ALL IDENT I Update changes any duplicate’ None.
NAMES WHICH WERE CHANGED identifiers to make them
DURING THE MERGE#**#* unique when merging two pro-
: gram libraries. -
#%%*NEW IDENT ON CHANGE F An attempt was made to change Correct the error.
DIRECTIVE IS ALREADY KNOWN%#** a correction set identifier to
one already in existence.
#%**NO ACTIVE LINES WERE N All line images within the None.
FOUND WITHIN THE COPY RANGE. specified range are inactive.
NULL COPY*%#*
*#%%*NO DECK NAME ON DECK F No name was specified on the Specify a name.
DIRECTIVE#®*#% DECK directive.
NO INPUT FILE, Q MODE, UPDATE F In quick mode, Update relies Put appropriate COMPILE
ABORT on the input file to determine directives in the input file.
what is written to the compile
file.
NO OLDPL, NOT CREATION RUN, F No old program library was Correct the error.
UPDATE ABORT supplied on a non—-creation
rumn.
%%NULL ADDFILE®%* I The first read on the file Correct the error.
specified by ADDFILE encounter-—
ed an end-of-record. If the
input file was specified, the
first read encountered an
illegal directive.
%%NULL IDENT##* F An identifier was not found on Correct the directive.

a directive where omne was
expected.

60449900

/

S’

«

TABLE B-1., DIAGNOSTICS (Contd)

Message Type Significance Action

%%XNULL DECK NAME#¥¥% F During ADDFILE or a CREATION Correct the directive.
run, Update encountered a DECK
or COMDECK directive that did
not have a name.

*%%0LDPL READ ERROR - ATTEMPTING F A parity error or other error Rerun the job. If the U option

RECOVERY *#% has occurred while processing is used, line images might be
an old program library. As a lost on the NEWPL.

*%%*READ RECOVERED - DATA LOST result, Update is uncertain of

BEFORE THE FOLLOWING LINE#*** the position of the old pro-

—line image- gram library. When Update
finds the next valid line fol-
lowing the error, the second
message and the image of that
line are printed.

OLDPLS HAVE DIFFERENT I The merging of two old program Use program libraries with the

CHARACTERS SETS libraries with different char- same character set.
acter sets is not allowed.

*#%%*QUTPUT LINE LIMIT EXCEEDED. N Update output exceeds the Use the LIMIT directive to

LIST OPTIONS 3 AND 4 DEFEATED#*#% line limit specified by increase one unit.
default or by the LIMIT
directive.

PLS HAVE DIFFERENT CONTROL F The merging of two program Use program libraries with the

CHARACTERS, ABORT libraries with different same control characters.
control characters is not
allowed.

*%**%*PREMATURE END OF RECORD ON F A PRU of level 0 was Rerun the job. If error still

OLD PROGRAM LIBRARY#*#*#* encountered in the line image. exists, recreate the program

library.

READING INPUT I The input file is being read None.
by Update.

*%**RECURSIVE CALL ON COMDECK F A common deck has called Correct the error.

dname IGNORED. FATAL ERROR**% itself or common decks that
contain calls to the specified
common deck.

SECONDARY OLDPL NOT RANDOM F Secondary old program Use random secondary old
libraries must be random. program libraries.

%%*SEQUENCE NUMBER EXCEEDS F The proper range of sequence Correct the error.

13107 1%%% numbers is 1 through 131071.

STACK DEPTH EXCEEDED F Stack in which line images are Follow site—defined proced-
placed became full while ures for reporting software
processing a BEFORE or ADDFILE errors or operational prob-
directive. lems. (increase RECURDEP).

TABLE MANAGER LOGIC ERROR F There is not enough table Increase field length.
space to accommodate the old
program library tables.

*%*THE ABOVE CALLED COMMON F The called common deck could Check the spelling of the deck

DECK WAS NOT FOUND#*#*% not be found. name. If creating a program

library with calls to secondary
old program libraries, set C=0
on the UPDATE control
statements.

*%%*THE ABOVE CARD AFFECTS A I Corrections are restricted Change the declared deck or

DECK OTHER THAN THE DECLARED
DECK#***

60449900 F

to the named deck.

correct the identifier name.

TABLE B-1. DIAGNOSTICS (Contd)
Message Type Significance Action

*%%*THE ABOVE DIRECTIVE IS F A directive that is not Remove the illegal directive.

ILLEGAL DURING A CREATION allowed on a creation run was

RUN#* %% encountered.

*%%*THE ABOVE DIRECTIVE IS N Directives *READ, *SKIP, or Remove the illegal directives.

ILLEGAL IN AN ALTERNATE FILE. *REWIND are illegal in an

IGNORED#*#*%* alternate file.

*%*THE ABOVE DIRECTIVE IS N CHANGE, PURGE, and YANK Remove the illegal directives.

TLLEGAL AFTER A DECK HAS BEEN directives are illegal after a

DECLARED#®*% deck has been specified on a
DECLARE directive. They are
ignored.

%%*THE ABOVE LISTED DIRECTIVES I Only YANK, YANKDECK, SEL- None.

CANNOT EXIST IN THE YANK DECK YANK, and DEFINE directives

AND HAVE BEEN PURGED DURING are kept in the YANK$$S deck.

EDITING***

**%*THE ABOVE OPERATION IS NOT F The specified operation is Correct the error.

LEGAL WHEN REFERENCING THE illegal when referencing the

YANK DECK*#% YANK$$S deck.

*%%THE ABOVE SPECIFIED LINE F Update could not locate the Make sure that the correct

WAS NOT ENCOUNTERED#*# specified line on the old pro- identifier is specified.
gram library.

*%%THE INITIAL LINE OF THE COPY N No copy was made. Make sure that the correct

RANGE WAS NOT FOUND. NULL identifier is specified.

COPY*%%

#%%THE TERMINAL LINE OF THE I The last line specified was Make sure that the correct

COPY RANGE WAS NOT FOUND. not found; the rest of the identifier is specified.

COPY ENDS AT END OF SPECIFIED deck was copied.

DECK#*#*

#%%*THE TERMINAL LINE SPECIFIED F While processing a line range, Make sure that the correct

WAS NOT ENCOUNTERED#*#** Update could not locate the identifier is specified.
last line of the range.

THIS UPDATE REQUIRED n WORDS OF I It took n words of memory for None .

CORE the update.

*%%T00 MANY CHBS —— INCREASE F Correction history bytes Increase of value of L.CHB

L.CHB**%* exceed the specified limit of in Update and reinstall it.
100g for a line.

TOO MANY SECONDARY OLDPLS F Up to seven secondary old Specify seven or fewer

SPECIFIED program libraries can be secondary old program
specified. libraries.

#*%%*UNBALANCED TEXT/ENDTEST N TEXT/ENDTEXT directives Make TEXT/ENDTEXT directives

DIRECTIVES#**% encountered in the run were matching pairs.
not matching pairs.

#%%UNKNOWN IDENTIFIER idname#**% F A correction directive Make sure that the correct
references an identifier not identifier is specified.
found in the directory.

UPDATE COMPLETE I The update is completed. None.

UPDATE CONTROL STATEMENT F The UPDATE control statement Correct the erroneous

ERROR(S)

§ 56

contains unacceptable
parameters. The erroneous
parameters are listed on the
next line.

parameters.

60449900

)

TABLE B-1.

DIAGNOSTICS (Contd)

Message

Type

Significance

Action

UPDATE CREATION RUN

WAITING FOR 45000B WORDS

*%**QLDPL. CHECKSUM
ERROR#*#*

*%%*YANK, SELYANK, OR YANKDECK
ident NOT KNOWN#%#*

***deckname IS NOT A VALID DECK

NAME %o

%%n ERRORS IN INPUT##*%*

##%n ERRORS IN INPUT, NEWPL,
COMPILE, SOURCE SUPPRESSED#%*

n ERRORS IN UPDATE INPUT

n DECLARE ERRORS

n FATAL ERRORS

n NONFATAL ERRORS

n OVERLAPPING CORRECTIONS

n UPDATE ERRORS, JOB ABORTED

This Update run was a creation
run.

Update is waiting for the
operating system to allocate
enough memory.

At least one updated deck
from the old program library
is bad.

The identifier referenced on a
YANK, SELYANK, or YANKDECK has
probably been purged; this
applies to lines already on
the library.

A deck name has 1 through 9

characters; legal characters
are: A through Z, 0 through
9, and + - * /() $=.

Update encountered n fatal
errors in the input stream.
Processing continues in order
to detect additional errors.
This message is issued only if
the U parameter is specified
on the control statement.

Update encountered n fatal
errors in the input stream.
Processing continues in order
to detect errors. A new
program library, a compile
file, and a source file are
not generated.

First pass of Update pro-
cessing encountered n fatal
errors while reading a
correction set.

Indicates the number of
directives that reference
line images in decks not
specified on DECLARE
directives.

Indicates the number of errors
that caused Update to abort.

Indicates the number of errors
that did not cause Update to
abort.

A correction set changed the
status of some lines more than
once or referenced an inactive
line image.

Errors were encountered in
reading the input file.

None .

None.

Rerun Job. If problem still
exists, follow site-defined

procedures for reporting soft-
ware errors or operational
problems.

Remove the yank directive
from the YANKSS deck.

Correct the deck name.

None.

None.

None.

None.

None.

None.

None.

None.

60449900 D

LY

GLOSSARY

ASCIT -

American Standard Code for Information Inter-
change. ASCII input and output codes for Update
are 8-bit characters right-justified in a 12-bit
byte.

Common Deck -
A deck that is written on a compile file as a
result of a CALL directive. The COMDECK
directive introduces a common deck.

Compile File -
The file generated by Update that contains line
images restored to a format that 1is acceptable
to a compiler or assembler,

Copy Run ~
An Update run that performs a sequential~to-
random or random-to-sequential copy of a program
library. Contrast with creation run and
correction run.

Correction History Byte -

A byte added to a line image by Update each time
the status of the line image changes. The
correction history byte tells Update whether or
not a line image is active or inactive and which
correction set modified the line image. A
maximum of 100B correction history bytes may
exist for each line.

Correction Run -
An Update run in which changes can be made to a
program library. Contrast with copy run and
creation run.

Correction Set -
A set of directives and text that direct Update
to modify a program library. The IDENT
directive introduces a correction set.

Creation Run -
An Update run that constructs a program
library. It is the original transfer of lines
into Update format. Contrast with copy run and
correction run.

Deck -
A deck consists of a DECK or COMDECK directive
and all text and directives until the next DECK
or COMDECK directive., It is the smallest unit
that can be extracted from a program library.

Deck List -
A 1list internal to Update that contains the
names of all decks in the program library and
the location of the first word for each deck.

Directory -
A list that contains one entry for each DECK,
COMDECK, and IDENT directive that is used for
the program library.

60449900 D

Full Update Mode ~
An Update run in which the F parameter is
selected on the control statement causing Update
to process all decks on the library. Contrast
with normal selective mode and quick Update mode.

Identifier -

The name of a deck, common deck, or correction
set.

Input File -
The user-supplied file or part of the job deck
that contains the dinput stream of Update
directives and text.

Known -
The status of a deck name or identifier that is
on the primary old program library. The deck
name must be in the deck list on the primary old
program library and an identifier must be in the
directory on the primary old program library.

Line Identifier -
The combination of identifier and sequence
number that uniquely identifies each line image
in a program library.

Master Control Character ~
A character in column 1 that informs Update
that the line contains a directive.

Merge File -
The file that contains a program library to be
merged with the old program 1library into a aew
program library.

New Program Library -
The program library either automatically gen~
erated by a creation run or optionally generated
by a correction rum.

Normal Selective Mode -
An Update run in which the F and Q options are
not selected on the control statement. All
decks specified on COMPILE directives as well as
all corrected decks are processed. Contrast
with full Update mode and quick Update mode.

0ld Program Library -
The program library to be modified.

Output File -
The print file generated by Update that contains
the status information produced during Update
execution. It is in a form suitable for
printing.

Program Library -
The file generated by an Update run that
contains decks of line images that can be
manipulated by Update.

Pullmod File -~
A file that contains directives and text or
re~created correction sets specified on PULLMOD
directives.

Quick Update Mode —
An Update run in which the Q option is selected
on the control statement. Only decks specified
on COMPILE directives and called common decks
are processed. Contrast with full Update mode
and normal selective mode.

Secondary 0ld Program Library -
A program library from which decks on the old
program library can call common decks.

Sequence Number -
A number supplied by Update that uniquely
identifies a line image.

Source File -
An optional file generated by Update that uses
line images of an input stream to generate a new
program library.

System—Logical Record -
Under NOS/BE, a data grouping that consists of
one or more PRUs terminated by a short PRU or
zero—length PRU. These records can be trans-

60449900 D

ferred between devices without loss of
structure. Equivalent to a logical record under
NOS. Table C-1 shows equivalency under
SCOPE 2.

TABLE C—-1. RECORD TYPE UNDER SCOPE 2

Type Level Equivalency

RT=W 0 thru lé6g end-of-section

RT=W 17g end-of-partition

RT=8 0 thru 1l7g end-of-record

RT=Z 0 thru 1l7g end-of-section

BT=C 0 thru 17g end-of-section
Unknown -

The status of a deck name or identifier that is
not on the old program library. A deck name or
identifier that is purged has the status of
unknown.

FILE FORMAT AND STRUCTURE D

The files generated and used by Update have formats
determined by both the operating system in use and
the user. This appendix describes default file
formats, allowed file formats, and the inter-
changeability of files among operating systems.
Table D~1 summarizes file structure according to
the operating system used.

LIBRARY FILE FORMATS

Update can create and maintain library files in two
distinetly different formats: random and sequen-
tial. These formats are described in detail
below. Random format should be wused whenever
possible because it can be processed substantially
faster than sequential format.

RANDOM FORMAT

On a vrandom format library, each deck 1is a
system—logical record as shown in figure D~1. The
deck records are followed by separate records
containing the deck 1list, the directory, and the
random index.

Random Index

The random index tells Update the beginning point
and length of the directory and the deck list. The
index also contains such information as the master
control character and the character set used when
the library was generated. Random index format is
shown in figure D-2.

Two copies of the random index are generated under
SCOPE 2 because Update generates another copy when
it closes the file. The closing of the file is a
process internal to Update.

Under SCOPE 2, Update adds a 2-word header to the
random index that indicates the number of words in
the index. SCOPE 2 header format is shown in
figure D-3.

Copying to Tape

Random program libraries should be copied to tape
through Update parameters. To copy a random
program library to tape under NOS or NOS/BE, use
the UPDATE control statement:

UPDATE(B,P=plname,N=1fn)
where plname is the library name and 1fn 1is the
tape file. To copy the 1library back to mass

storage, use:

UPDATE (A,P=1fn,N=newpl)

60449900 F

YANKS$$S Deck

EACH DECK IS
A LOGICAL
RECORD T

<~FIRST ENTRY

Deck List POINTS TO
YANKS$S
DECK
Directory

SCOPE 2 HeadeﬁT

Random Index

Random Index

-——EOI---

TFor SCOPE 2, each deck is a section.
THeader applies to SCOPE 2 only.

Figure D-1. Random Program Library Format

where 1fn is the tape file and newpl is the new
program library name.

Under SCOPE 2, use the UPDATE control statement:
UPDATE(F,P=plname,N=1£fn)

to copy a random program library to tape. The

program library name is plname and 1fn is the tape

file. To copy the library back to mass storage,

use:

UPDATE(F,P=1fn,N=newpl)

where 1lfn is the tape %ile and newpl is the new
program library name.

TABLE D-1. FILE STRUCTURE VERSUS OPERATING SYSTEM
NOS/BE NOs SCOPE 2
Uggize Tape Mass Storage Tape Mass Storage Tape Mass Storage
P=0LDPL Binary Random or Binary Random or Binary, sequentialT Random: RT=W,
SI tape| sequential SI tape or| sequential RT=W or S unblocked
I tape Sequential: RTI=W,
unblocked
RI=W
N=NEWPL Binary Random or Binary Random Binary, sequential Random if unblocked
SI tape| W - sequential | SI tape or| W - sequential | RT=W or § Sequential if blocked
I tape or if W specified
on Update control
statement.
RT=W,unblocked by
default.
RT=blocked W or S;
specified through
FILE control state~
ment,
Cannot be blocked if
random.
C=COMPILE Binary Sequential Binary Sequential RT=W,1 blocked. RT=W,unblocked.
RT=Z RT=Z Other types (F or Other types (F or
Z only) determined Z only) determined
by FILE control by FILE control
statement. statement.
I=INPUT Binary Sequential Binary Sequential RT=W,I blocked. RT=W,unblocked
RT=Z RT=2 Other blocking or RT=W blocked or RT=Z,
RT=Z, FL £ 256 FL < 256 through FILE
through FILE con~ control statement.
trol statement.
0=0UTPUT Binary Sequential - Binary Sequential RT=W,I blocked. RT=W,unblocked
RT=2Z RT=2Z Other types
possible through
FILE control
statement.
S=SOURCE Binary Sequential Binary Sequential RT=W,I blocked. RT=W,unblocked
RT=2Z RT=2Z Other blocking or RT=W blocked or RT=Z
RT=Z, FL < 256 if specified
through FILE con- through FILE con-
trol statement. trol statement.
*READ 1fn or | Binary Sequential Determined| Sequential RT=W,I blocked. RT=W,unblocked
*ADDFILE 1ifn RT=Z by REQUEST| RT=Z Other blocking or RT=W blocked or RT=Z
or LABEL RT=Z, FL < 256 if specified
control through FILE con- through FILE con-
- statement trol statement. trol statement.

tial file.
records.

to a W unblocked file.

W records are 5120 characters in length.
directory header containing DIRECTS to identify random file and for presence of CHECK in word 1 of sequen-

If both tests fail, library format is unacceptable.

TRandom files can be put on tape by copying the file to tape. To access this file, it must first be copied

SCOPE 2 Update checks for presence of

Random format library must be unblocked W

NOTE

Update uses 7000 record manager for 1/0, but Update does not use 6000 record manager
(BAM) Basic Access Method.

A FILE control statement can be used with SCOPE, but this

control statement is ignored under NOS and NOS/BE.

60449900 D

59 &7 29 24 23 17 L 5

7000 ditl dlira
unused dirl dirra
unused m X Lab y c
label

Label (contd)

7000 Identifies random directory record.
[- 181 Length of the deck List in words.
dllra Random address of first word of deck Llist.
dirl Length of directory in words.
dirra Random address of first word of directory.
m Indicates presence of deck bits in deck list
1 Deck bits present.
other Deck bits not present.
X Character set identifier determined by IP.CSET parameter.
3 Gég) IP.CSET is set for a 63-character set.
4 (37g8) IP.CSET is set for a 64-character set.
7 (42g) IP.CSET is set for 63-character set plus ASCII.
8 (43g) IP.CSET is set for é4-character set plus ASCII.
Lab Label flag:
nonzero Words 3 and 4 contain tape label.
0 Words 3 and 4 not present.

SCOPE 2 does not recognize tape labels.
y Indicates which character set was used when the library was generated.

Y or null 64~-character set used.
other 63-character set used.

c Indicates master control character in use when the Library was created.

Figure D-2. Random Index Format

59 17

DIRECTS unused

n Number of words in the random index.

60449900 D

Figure D-3. SCOPE 2 Random Index Header Format

SEQUENTIAL FORMAT

Update optionally creates new program libraries in
sequential format. On magnetic tape, a sequential
library (I tape format on NOS, SI tape format on
NOS/BE, or RT=S on SCOPE) is written as one record
in binary (figure D-4). The first word in the
file is a display code key word (figure D-5); the
second is a counter word containing the number of
deck names in the deck 1list and the count of
correction set identifiers imn the directory
(figure D-6). The last word in the file is a
checksum (figure D-7).

YANK$$$ DECK

The YANKSS deck is automatically created on a
creation run as the first deck on the program
library. It does not have a DECK line as its first
line image. On correction runs, Update inserts
into the YANKS$$S deck any YANK, SELYANK, YANKDECK,
and DEFINE directives that it encounters during the
read—-input—-stream phase. These directives acquire
identification and sequence information from the
correction set from which they originate. On a
merge, the two YANKSS decks are merged into a
single deck.

Although the YANK$$S deck as a whole cannot be
yanked or purged, lines in the deck can be deleted,
yanked, or purged. If information other than the
four directive types mentioned inadvertently gets
into the YANKSS deck, this information can be
purged through the E option on the Update control
statement or through the SELYANK directive. The
YANKSS deck is maintained in display code.

DECK LIST

The deck list is a table that contains an entry for
each deck on the program library. Each entry on a
sequential program library consists of one word
containing the deck name; bit three is reserved for
the deck bit that indicates whether or not the deck
is a common deck. Each deck list entry on a random
program library consists of two words as shown in
figure D~8. The deck list is maintained in display
code.

DIRECTORY

The directory is a table that contains one entry
for each DECK, COMDECK, and IDENT that has ever
been used for this library. Directory entries each
consist of one word containing the 1 through 9

character identifier in display code,
left—-justified with zero fill. Correction set
identifiers and deck names are listed

chronologically as they are introduced into the
library. The directory is maintained in display
code.

A deck name that has been purged remains in the
table although it is not printed on the listable
output file. The purged deck names are not removed
from the table unless the E (edit) parameter is
specified on the Update control statement.

The number of identifiers in the directory is

limited by the amount of central memory (or small
core memory) available.

D~4

Display Code Key Word

Counter Word

Directory

Deck List

YANK$$S Deck

Deck 1

Deck 2

}
i
)
1

Deck n

Checksum

Figure D~4., Sequential Program
Library Format

Each directory entry has the format shown in
figure D-9. For a purged identifier, bits 59
through 6 are zeros, and bits 5 through 0 contain
a 20g.

COMPRESSED TEXT FORMAT

Text is an indefinite number of words that contain
a correction history and the compressed image of
each line in the deck. Information for each line
is in the format shown in figure D-10.

OLD SEQUENTIAL FORMAT

Update accepts library files in the old
(pre-SCOPE 3.4) Update sequential format as shown
in figure D-1l. These libraries resemble the new
sequential format but do not contain the CHECK word
or checksum, and the text format and correction
history bytes are different. Word 2 on the new
format is the same as word 1 on the old format.
Update no longer generates this obsolete sequential
format.

60449900 D

59 29 24 23 17 " 5 0
CHECK 00 m X Lab y [
CHECK Identifies the file as being a sequential file.
m Indicates presence of deck bits in deck Llist:
1 Deck bits present.
other Deck bits not present.
X Character set identifier determined by IP.CSET parameter:
3 (36g) IP.CSET is set for a 63-character set.
& (37g) IP.CSET is set for a é4-character set.
7 (429 IP.CSET is set for 63-character set plus ASCII.
8 (43g) IP.CSET is set for G4~character set plus ASCII.
Lab Label flag:
L Indicates labeled tape.
null Indicates unlabeled tape.
SCOPE 2 does not recognize tape labels.
Y Indicates which character set used when the library was generated:
Y or null bb4~character set used.
other 63-character set used.
c Indicates master control character in use when the library was created.
Figure D-5. Display Code Key Word Format
59 35 17 ¢]
unused idcount dcount
idcount Number of identifiers in the directory.
dcount Number of deck names in the deck list.
Figure D-6. Counter Word Format
59 0
checksum
checksum Count of bits in the program library.

60449900 C

Figure D-7. Checksum Format

59 29 5 3 O

dname unidjun

unused ra

dname 1 through 9 alphanumeric character deck name obtained from DECK or COMDECK
directive when deck was placed on Llibrary. The first dname is YANK$$S.

un Unused.
d bDeck bit. Indicates kind of deck.

0 Common deck.
1 Regular deck.

ra Random address of first word of compressed text for the deck.

Figure D-8. Random Program Library Deck List Format

59 5 0

unused

l identifier or 20g

Figure D-9. Directory Format

59 58 53 35 17 0

c| stat We segnum chb 1

clunused chb 2 chb 3 chb 4

cjunused chb n-2 chb n-1 chb n
compressed line

c Correction history byte flag. Indicates the last word containing
correction history bytes.

0 Not last word.
| 1 Last word.

Figure D-10. Compressed Text Format on Program Library (Sheet 1 of 3)

D-6 60449900 D

stat Line status:
58 56 54 53
a b d
a Activity bit:
0 Line is inactive.
1 Line is active.
b Character set mode:
0 Character set is display code.
1 Character set is ASCII.
d Yank deck indicator (*DECK directive only):
0 Deck not yanked.
1 Deck yanked.
WC Number of words of compressed text for this line, excluding words
. containing correction history bytes.
‘E segnum Sequence number of line (octal) according to position in deck or
: correction set identified by chb 1.
chbj " Correction history byte. Update creates a byte for each correction
set that changes the status of the line. The format of chb is:
17 15 0
yla identno
, y Yank bit:
j} 0 Line not yanked.
B 1 Line has been yanked.
a Activity bit:
0 Correction set deactivated the line.
1 Correction set activated the line.
identno Index to the entry in the directory that contains the name
of the correction set or deck that introduced the Line or
changed the line status.
N} Compressed The compressed image of the line in display code. Single and double
- line in spaces are unaltered. Three or more embedded spaces are replaced in
display the image as follows:
code
3 spaces replaced by 0002g
4 spaces replaced by 0003g
5 spaces replaced by 0004g
64 spaces replaced by 0077g
65 spaces replaced by 007755g
66 spaces replaced by 00775555g
67 spaces replaced by 00770002g, etc.
Trailing spaces are not considered as embedded and are not included
in the line image. A 4-digit octal code 0000 or word count (wc)
reached marks the end of the line. This is conditional on the
CHARS4 option.
Wﬁ; Figure D-10. Compressed Text Format on Program Library (Sheet 2 of 3)

@j 60449900 D

31
32
33

000g (NUL)
001g (SH)

037g(US)

When the full-character set installation option is assembled, a byte
of 0001 represents a colon.

Compressed The compressed image of the line in ASCII. One or more spaces are
Line in replaced in the image as follows:
ASCII code

1 space replaced by 040g

2 spaces replaced by 001g

3 spaces replaced by 002g

4 spaces replaced by 003g

spaces replaced by 036g
spaces replaced by 037g 040g
spaces replaced by 037g 041g
replaced by 037g 000g

replaced by 037g 001g

replaced by 037g 0373

Compressed ASCII characters are stored as 7-1/2 eight~bit characters
per 60-bit word, with multiple blanks compressed and trailing blanks
B removed.

A four-digit octal code 0000g marks the end of the Lline,

if the code occurs before the end of the Last word is reached. Only

the lower 8 bits of each 12-bit byte are saved; the upper 4 bits are
ignored, unless expanding a compressed line image. When expanding

l an ASCII compressed line image, the upper &4 bits of each character

are set to zero, unless the character is NUL (000g). If the

character is NUL, the 12-bit value 4000g is returned. Characters

in the range 041g to 377g are stored unchanged.

Figure D-10. Compressed Text Format on Program Library (Sheet 3 of 3)

59 35 17 0
d identifier deck
unuse count count
Directory
Deck List

YANK$$$ Deck

W

Figure D-11. OLld Sequential Program

Library Format

D-8

INTERCHANGEABILITY OF
LIBRARIES

When the random format libraries have been copied
to tapes, the 1libraries have limited inter-
changeability among the operating systems. This
interchangeability is shown in table D-2.

The control statements COPY, COPYBF, COPYBR,
COPYCF, or COPYCR should not be used on random
access files on NOS/BE or on SCOPE since these
operating systems might not recognize that the
copied file is a random access file.

Sequential program libraries are interchangeable
among operating systems when they are system-
logical records (Record Manager type S records).

COMPILE FILE FORMAT

Through control statement parameters, the user can
specify whether the text on the compile file is to
be compressed or expanded, and sequenced or
unsequenced. The expanded compile file format for
each line consists of 72 or 80 columns of data
followed by O to 18 columns of sequence informa-
tion. The maximum size of a line image is 90
columns.

60449900 D

TABLE D-2. FILE INTERCHANGEABILITY If the data field and line image are both 80, the
compile file output cannot have sequence infor-

oy mation appended.
? System to Read
System That Generated Random Library From The width statement overrides the values specified
Random Library on ’I‘ape'i~ by D and 8. The table D-3 shows the equivalence of
i ®
Tape NOS | NOS/BE |SCOPE 2 tl.le D. and 8 parameter options to the WIDTH
directive.
NOS Yes | No No
TABLE D-3. WIDTH DIRECTIVE EQUIVALENCE
NOS/BE Yes Yes NOTT TO D AND 8 OPTIONS
SCOPE No No Yes
D and 8 Options *WIDTH Equivalent
TA yes indicates the tape can be read; a no . i
indicates it cannot. neither D nor 8 option *WIDTH 72,14
TTMust be copied to unblocked mass storage D option *WIDTH 80,10
file when read in.
8 option *WIDTH 72,8
. D,8 option *WIDTH 80,0
} Update attempts to place sequence information in
the columns remaining in the line image after the
data columns have been allocated. When the data The examples 1in figure D-12 show how Update
field is 72 and the line image is 90 columns, positions sequencing information for the various
column 73 is blank and 17 columns are available for control statement options.
sequencing information. In this case, the | to 9
character identifier is left-justified in In addition, figure D-13 shows possible widths of
column 74, and the sequence number is right- the identification field and the positioning of the
justified in column 86. identifier name and sequence number. The total
length possible for the identification field 1is
When the data field is 72 and the line image is 80 17. If the identification field length is larger
columns, 8 columns are available for sequencing than 17, extra blanks will be inserted between the
information. If the data field is 80 and the line sequence fields.
image is 90, 10 columns are available for
sequencing information. In either of these cases, If the 80- or 90-character line image on the
if the identifier and sequence number exceed the compile file has two blanks as the last two
field, Update truncates the least significant characters, these are converted to a 0000 line
(right-most) characters of the identifier leaving terminator and the line image is 8 (or 9) words
the sequence number intact. long. If the last two columns do not con-
73| 74 80 86 90
. NORMAL COMPILE OUTPUT—==| A | § EJV]IE|N]CIH 1 1 3 I
Mﬁj WITH D OPTION —— S £ v E N c 1 1 4 4
WITH 8 OPTION -] § E v E 1 1 4 4

Figure D-12. Sequencing Format for Compile File

80 85 90 95 100
*WIDTH 80,5 — s s|lelv]E|S3
*WIDTH 80,15 —= AlS E v E N c H 3
*WIDTH 80,20 —— Al A Ja Als E v E N C H 3
Vj Figure D-13. Sequence Number Overlay

60449900 F D-9

tain blanks, a word containing 8 blanks and a The format of the compressed compile file is shown

zero-byte line terminator are added, thus making in figure D-14. The first word is a loader prefix
the line image 9 (or 10) words long. This same table (77g). Compressed format is generated
procedure is used for creation of the source file. through the X option on the UPDATE control

statement.

59 53 47 41 35 17 0
77 00 00 00 unused
sequence field 1
nw 1
~ compressed line 1 ~
sequence field 2
nw 2
~ compressed Line 2 ~
a compressed lines can use more than one word =
sequence field n
nWw n
~ compressed line n -

sequence field;

nw.;

compressed linej

17 characters comprising card columns 74 through 90. Column 73 is
always blank.

Binary number of words in compressed line.

gach 00 character is replaced by the 12-bit value 0001, and three or
more consecutive blanks (to a maximum of 64) are replaced by a 12-bit
value 0002 through 0077g. A single blank is represented in display
code (55g); two consecutive blanks are represented by the 12-bit

value 5555g, 1If the last word is not full, it is padded on the
right with binary zeros. Because word count nw is present, an extra

all-zero word is not required to guarantee 12 zero bits. *WIDTH
directives are ignored with compressed compile files. The full line
image is always present, and the sequence field information is always
a full 17 characters.

Figure D-14., Compile File Compressed Format

60449900 D

)

A parameter 4-1

ABBREV directive 3-14

ADDFILE directive
Deseription 3-1, 3-5
Examples 5-4

B parameter 4-1
BEFORE directive 3-6

C parameter 41

CALL directive
Description 3-11
Example 5-2

CHANGE directive 3-6

Character sets A~1

COMDECK directive
Description 1-2, 3-4, 3-5
Example 5-1

Comments 3-3, 3~16, 4-7

Common decks (see Decks)

COMPILE directive 3-11

Compile file (see Files)

Control Statement (see UPDATE control statement)

COPY directive
Description 3-6
Example 5-2
Copy run 1-3, 2-2
Correction history bytes 1-3
Correction run
Description 1-2
Example 5~2
Files 2—-1
Correction set 1-2, 3-7, 3-8
Creation run
Description 1-2
Example 5-1
Files 2-1
CWEOR directive 3-1, 3-3, 3-4, 3-11

D parameter 4-2
Debugging 4-6
DECK directive
Description 1-2, 3-5
Example 5-1
Deck list 1-2, D-4
Decks
Common
Calling 3-11
Description 1-2, 3-4, 3-5
Example 5~1
Regular
Description 1-2, 3-4
Example 5-1
DECLARE directive 3~1, 3~15
DEFINE directive 3-15
DELETE directive
Description 3~7
Example 5-2
Diagnostic Messages B-1

60449900 F

INDEX

Directives
Compile file 2-3, 3-11
Correction 3-5
Deck identifying 3-4
Description 1-1, 1-2, 3-1
File manipulation 3~13
Format 3-3
Input stream control 3-14
Special 3~-15

Directory 1-2, 3-8, D-4

DO directive
Description 3-12
Example 5~4

DONT directive
Description 3~-12
Example 54

E parameter 4-3

END directive 3~15

ENDIF directive
Description 3-12
Example 5-4

ENDTEXT directive 3~14

F parameter 4-3
Files
Compile
Control statement parameters
Description -1, 2-3
Format D-8
Input
Control statement parameter
Description 1-2, 2~-1
Example 5-1
Listable output 2-4
Merge .

4-1,

4-3

Control statement parameter 4-4

Description 1-2, 2-4
New program library
Control statement parameter
Description 1-1, 2-3
01d program library
Control statement parameter
Description 1-1, 2-3
Output
Control statement parameter
Description 1-1, 2-4
Pullmod
Control statement parameter
Description 1-2, 24
Example 5-4
Secondary old program library
Control statement parameter
Description 2-3, 3-11
Source B
Control statement parameter
Description 1-2, 2-4
Full mode (see Update mode)

G parameter 4-3

4-5

4-5

4-6

4-6

Index~-1

v,

H parameter 4-3

I parameter
Description 4-3
Example 5~1

IDENT directive 3-7

IF direttive
Description 3~12
Example 5~4

Input file (see Files)

Input stream 1-1, 2-2

INSERT directive
Description 3-8
Example 5-2

K parameter 4-3

L parameter 4-4

LIMIT directive 3-15
Line identifier 1-1, 3-4
LIST directive 3-14

M parameter b4

Master control character 3-3, 4-6
Merge file (see Files)

MOVE directive 3-8

N parameter 4-5

New program library (see Files)
NOABBREV directive 3-14

NOLIST directive 3~-14

Normal selective mode (see Update mode)

0 parameter 4-5

014 program library (see Files)
Output file (see Files)
Overlapping Corrections B-1

P parameter 4-5
Primary input stream (see Input stream)
Program library (see also Files)
Auditing 4-3
Editing 4~2
Random and sequential
Description 2-2, 4-2, 4-4, 4-5
Format D-1
PULLMOD directive
Description 3-15
Example 5-4, 5-5
Pullmod file (see Files)
PURDECK directive
Description 3-8
Example 5-3
PURGE directive
Description 3-9
Example 5~2, 5-3

Q parameter 4-5
Quick mode (see Update mode)

Index-2

R parameter 4-5

Random program library (see Program library)
READ directive 3-13

Regular deck (see Decks)

RESTORE directive 3-9

REWIND directive 3-13

S parameter 4-6
Secondary input stream (see Input stream)
Secondary old program library (see Files)
SELPURGE directive

Description 3-9

Example 5-3
SELYANK directive

Description 3-10

Example 5-3
SEQUENCE directive 3~10
Sequential program library (see Program library)
SKIP directive 3-14
Source file (see Files)

T parameter 4-6
TEXT directive 3-14

U parameter 4-6
UPDATE control statement
Description 4~1
Examples 4-7
Parameters 1-1, 4-1
Update mode
Full 1-3, 4-3
Normal selective 1-3, 4-3, 4-5
Quick 1-3, 2-4, 4-~5

W parameter 4-6

WEOR directive
Description 3-3, 3-4, 3-13
Example 5-1

WIDTH directive
Description 3-13

X parameter 4-6, D-10

YANK directive
Description 3-10
Example 5-3

YANKDECK directive
Description 3-10
Example 5-3

YANK$$$ deck 1-2, D-4

parameter 4-6 /
comment directive 3-15
parameter 4-7

parameter 4-6

00

60449900 D

B COMMENT SHEET
3
. MANUAL TITLE: Update Version 1 Reference Manual
% PUBLICATION NO.: 60449900
REVISION: F
This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested
additions or deletions, or general comments on the back (please include page number
references).
Please reply No reply necessary
FOLD FOLD
. NO POSTAGE
% NECESSARY
y IF MAILED
IN THE
UNITED STATES
e
BUSINESS REPLY MAIL ——
2 FIRST CLASS PERMIT NO. 8241 PAINNEAPOLIS, MINN. EEmE
-
e
z POSTAGE WILL BE PAID BY T
) 6 CONTROL DATA CORPORATION
= . T
L Z Publications and Graphics Division
T
P-0. BOX 3492 e
Sunnyvale, California 94088-3482 e
e menenons]
e
s
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE
NAME:
COMPANY :
STREET ADDRESS:
CITY/STATE/ZIP:

2

/

o=/

pa33TmO

Jojoeaey) [013UO) JuLWWO) /

2

*

O=g

P2337WO

d330BIBY) TOIJUO) II3ISEY x

sumnyod (8

suwnyod Qg

8

po33TmWo

°174 oTrdwo) up yapry =8ewy Ul g

Jewioy passaidwod ufy

jemioy passaidwod uy jou

X

pa33Twmo

9774 211dwo)y passaidmo)y ¥

TeT3usnbas

9Tqrssod JT wopuel

M

pe33Tmo

Jemiog AJieiqj] Weis0lg May [BFIuenbag M

UOTINIIXI
pu2 j0u Op 810113 TejeJ

UOTINDIX? SPuUa 10113 TBIBJ

UIT

F0dN0S

auou

n
Pe313Two
dTeH nq2q 0

uyT=gL 10
UJT=9L 10 UFT=]

8L 10 91 10 [

pa33Two

9TTd 20In0g WOIg

uyy
a0dN0s

|uou

(s ‘a
‘N ‘D) STT3 Pa73Toads pupmaa

Surpurmal ou

89773 pumMal

Syo°Q UOWWO) ITWQ I

uzT=gg 10
U3T=9S 10 UFT=§

8S 10 9§ 10 §

pe33Tmo

dWEN °9[F4 99INn05 §

o0+ *d=y

L.

pa3i3jtwo

83174 PUmMsy ¥

SHILINVHVd LNIWILVLS TOHLNOD 31vadn

apom }21nb o)

9poW SATIDD[I8 Temwliou pelaTwmwo

°poN 23epdy AT
18 U0 S9TIBPUODAS TJTI0 ***7s/18/=d

TS UO SITIBPUODAS fUIT *°*/7S/1S/UIT=d

UIT uyi=d
gd 10 94 I0
1da10 d 10 pe33Tmo

swey o174 41eiqr] weiBoig PTO

uzT=80 10
U7 uzT=90 10 UIT=Q

80 10 90
I0dIn0 10 O 10 Pa3ITWo

Pwey @174 3ndanp 3TqeIST]

ujT=8N a0
uyT UFT=9N 10 UIT=N
TdMAN 8N 10 9N 10 N
unx
1073921100 JT ss2addns (TIMAN pa33Twmo

swey 9[Td AJeiqT] Wei301g MeN

uyt uIT=N
HAOWIH 8W 10 gW 10 W
2819w ou pe13Two

§oTdel1qT] Wel1301y 2B819K
d 1oy ‘¢ naya 1 suorado D* *i* D=
But3sT] ssaaddns 0=1

1 :3ndano Teurmial

1 ‘y :una Adod

p ‘e ‘z 1 ‘V :unl UOT3IIBII0D
7 ‘T ‘Y :uni uoyleaId pa233TwmO

suoradp Indang 27qeISTT

uyT 3TT3 uyT=gy I0

uo 2duanbas SATIVAITP FTIJWOD UIT=9N 10 U=y

ATIdWOD °TTF g1 10

uo @ouanbas IATIVAITP FATIAWOD 9y 10y
uoT3IBI0T

}09p sauUTWIalAp Jazawered) p2337WO

@ouanbag aTTJ @11dwo)

uIT=g1 10
ujT UFT=9I I0 uIT=T

81 10 91
INdNI 10 T I0 Pa3ITwWo

SweN 9[fJ wWeai3g anduy I

%9 Y=H
€9 €=H
398 3TneIap H 10 pa33Tumo

?38ueyy 3ag I930BiBYD H

uyT=g9 10
uy] uyT=99 10 UIT=H

91FJ 221nos pa33TWO

sweN 3TTd POWIIRNd 9

apom TInJ 4

JPpOW IATIVD[2S Tewiou pe33TwWo
Ppow oaepdn TInd 4

Burarpe a

But3tpe ou pe33Tmwo

Kaeaqyy weiBoag pIo ITPA A
sumnTod (g a

sumnod 7/ P2331WO

9174 217dwo) up YIPTM BIBA Q

auou 0=2
HONNd . HONNd=D
uzT=g) 10

uyT ujyT=9) 10 UzI=D

80 10 99
AIIdA0D 10 D, 10 P33 FWO

owey 9174 °1Fdwo)y O
£dod a

Adod ou pa33TWO

Adop Tetjuanbag-oj-mopuey g
£dod v

Adod ou p233Twmo

Zdop wmopuey-o3-Tefiusnbag vy

(ud‘+--‘zd‘rd)aivadn

60449900 F

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A.

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

GO,

CONTROL DATA CORPORATION

M\/zm IN ¢ é&

)

o N
/ ¥ M k

@ \a’\""r LE 4

FILE (cqMpr | r“)cﬂr) rmf

CGP*(SF (C E(lVLPlLt«)

ENDW EnpLST.

S ADDRLE

KDEC P¢ NULL

w AL DY UMENT |

RWE(R

‘_‘__/a'

S

@\Q&iﬁw GRITYOC
i AN ELR

N AL ARRADOC

>

48 <.,

Y

53

R e

“58

15(

%
"
118
19
2
al
22
2
24
%5
%
a(
%
29
n(
a
)
39
U
%
36 (
3
3
(.
40
41
a(
a
44
45(
4%
47

49

51
52

54
55

56

s

59

(-

UPDATE netes.

f&#&~24é4;m drokives iy |
C{dz 5Wm Mmm ﬁéw __ E |

tg #FD D idyn, o

T

; +D 4:0(9 ”lz_j "z -aet?w[z»’"z.d/z-m 13 i
KCopy Andvly Wy = &ty dmore,dneme.n, ¥

15 {

Z.- AW-L&//W%M Wcm\,é:j

m%wffw Crwmwla-) 21(

Mvwws ’ & MAN K wﬁ M «Wmﬂzn
/jM‘%g’V"\’/SWJXO/W{‘/W’WL wwlmmw- "
AW dwedk-ive | Lraw%m%%%wrﬁw .

& ypnny cawd onf meumany sl a0l x
(Mé wrj% o M ~ea MD u[n & .

198(<4—15 Rer C. h

182-07-20 &err D 4

982 08—\, Sorece Loy los SO T30 2

v 1982 Mur 29 Renr £ (|
984 Do (2 fen~ F . i

@E—&K iD [

,..n,

| ekcmgm ' @Lwé

1 ri)-,..

BOE

{“1)_.,.’,‘
fIR) =R,
Iml S) =8,

() J
(" Qedfqali)l=|.,
{n)=2,
()=,
“ ¥ w

aaeyor 17D

! y ol
rfrh
| terd
Nt 1R - [Y]
[o
fraonet
.) L0
vi LY
vo o~
1>t} 3 31] - \ J
P . % ¥ $ a & » @ .])
P e s e s e s e oL stagafoaal ARR
. » " - - . 4 - Ty RN ¥y . PALVYA
- * . - - - . o . . - . . . T
2 e . fgagynndn tutu [o [HAVIG
" e N % R M e % O m & @& s ¥ s x oW w A
B - - . . . - - » » : IR0
£ & o e & . /’.‘P—m Il
. - B - - - - -~ . § A
2 e golty rari = DH
. 2 puifiiew ealtty 1ail = WH
i e ot ol tow 2dui tat| = IH
3 & nttyny pnitnorstezog pliy Al
. 4 .’le_ 'Ylg 2 le o2
i s b S & & @)x‘ 1(‘rl 18114 aleg o
INHEAET DREATHE TR

P t Y

» s s s 8 s s s aos o e . 9itusy JLAGE
- . - - . . - . ‘?';"' l"“‘-‘
. s o o 9nttuan ITAQL

) «km;sm' TEﬁ—(N b luna YAO]
riul

*D ERE= Ed&WWE—

«D ==X

FLux &, .7 "

i

vgal

i randng ",] el
N N N N N . & N * IR X [l;w' y | A7 A l } 10
¢ & w . e s e s s s = s BIITAYII2 NDob
HAT) 4G
- - - - - L] - - L - L - . - y
« 5 B & i e & » @w (8 1) & 193 tqw3n
a8 } ! o 12 | & onR

eyt Tustal

'

~

@ ~ e an &

INDEX 12789/77 16,20,09 PAGE 9
CYI interactive SYSTEM o o« s o o o o s s o oi=(8) 22(18,1=12)
Job control = see CYT76
Editing = see ED
List 1/0 queues = see CY76
CYI » Statijon 7 o .
see also = interactive system) e e
Disp°s‘ti°9 types , s » » o P s a3m(15)
CYJ card 8 % _ s 8§ R A & "R & 2 8 @ p o= oo 15c16) 3I=(2)
CYJ Jjob subM1ssion B8 A .8 :0 A 8 -8 -8 & @ @ .35(2-32
see also 176 Jjob submission) o
CY76 = Interactive Cvper7b interrogation ., ,2m(lemid)
COMMENT] ; " [] ” s L] »] » L] ®] L * pEE(13)
DROP - teﬂminate job # 2 2 8 & 3 8 8 ® 32'(13&)
EVICT - de!ete oytpu, LI T T N I T T B .2-(13)
a8 A % ® & & _®» 2 8 s * 325(133)
DIVERT - a]ten,autpu: reauest , » » o » s27(13,1)
ONSW o o 2 » 2 2 p 8 8 2 2 o s » s 5 » !2”(13!) -
OFFSW o » o s o pp ra p 2 o p # 2 2 0 pem(13.1]
JCB . L SN U R U N N NG N N R N N N N N na’(“” 2 e
B!JCB T f s % 2 & 2 § 8 ® ® a * & s 2 2 20(143
HO = ligt files waiting to print .+ o« » .25(14)
HP = list files waiting to be output , ,2=(14)
HI = list Jlobs waijting to execute . o o« 22=(14) -
DATA file positioning routine o » » o » » #8=(42)
see also END s a g2 2 5 8 8 8 # @ 28m(4d1)
see also FUSE 1‘bFaPV A ® A e & . m » 2 " 8w (24m43)
datambase management = . . N
5ee FORDATA LI I T O T R , PR N RN R T) ,3’(57)
INFQL .- 8 ; 2 a2 & ® % & & m . ® w & B -&’(57) -
date routines - . o
GDATE Fcutiﬁe LI N S TR R T W BRI N S N ,8ﬂ(233
IDATE routine P T R N N IR U T IR R) pa-(aa)
JOATE routine o » o s 2 o » 2 » s 5 2 » s8u(22) ST
JDAY noutine a " s ® » % & 8 ®m " & w @ 08'(23)
Julian day number - |
see JDAY, GDATE
Debugaing
see=programming techniaues , . ., . , . . |
DEC LA36 teleprinter . o+ s s » » » s » s » 2C=(6) |
dﬂﬁk stFUCtUPe s 8 » s ® 5 é ,.’ 2 o8 o2 2 ,1#(16:19R293 g
.DECNRITER s ® 2 s 2 B P & m B 8 & 8 @® ,C!(b) {
DQCHP‘tQF e (LA36) ® & & ® A & » 8 x 8 2 9 pC”(6)
see also Console tvpeS & 4 o o o o » s oCw(l,im6) |
default values |
see Installation parameters =, . = !
output dispOSition » o s » 2 s a2 » » » a3=(16)
plotter d(SPQSjtiaﬂ 2 8 ® A 85 s 2 » 8 ® ,3'(15)
punch disposition « » s 2 » o 2 s 2 » » a3mw(l6) !
punch B dispOSition o o s o o o o o o o o3=(16) |
CSIRO USERS® MANUAL - EDITION |

